%etQUARRY

NetQuarry, Inc.
Training

400 - Coding



400 - Coding

n etQU A R RY www.netquarry.com

Generated Code

The platform provides a mechanism to convert application meta data into application code. The
generated code consists of Typed Mapper objects, Session properties and Picklists. The code generation
allows you to refer to meta data in code as objects.

How to safely generate, generated code

The generated code files are located in the common project. This is the top level project that allows the
Data object and extensions all refer to the generated code. The generated code is all created from meta
data but it’s not always necessary to regenerate the code whenever you make meta data changes.
However there are times when regenerating the code is mandatory.

e Added/Modified Session property
e Added field in mapper you want to refer to in extension
e Changed the data type of a mapper field

e Added a picklist you want to refer to in code.

When you do need to regenerate the code (by running the gen-code.bat file in Database\Meta) you
should follow this procedure.

e Make sure your meta data (for modules you haven’t modified) is completely up to date.
e Check out the three generated files, PickListEnums.cs, Session.cs, TypedMappers.cs
e Run the batch file gen-code.bat file

e Verify the code generation ran without any errors. The most common code generation error is
with trying to use the underlying view for a mapper and the view is invalid or missing.

e Fix any problems
e Rebuild the entire code base

o Verify the build succeeds. After regenerating typed mappers it’s possible to introduce build
problems. The most common reason for introducing build issues are...

0 Fields have been deleted from mappers

0 Fields have been flavored with an include flavor (so not included on mappers with 0
flavor)

0 Data types have been modified on fields

info@netquarry.com 1 NetQuarry, Inc.



400 - Coding www.netquarry.com

netQUARRY

0 Fields have been added that use .Net reserved names as key names

e [f there are any problems with the build, you must fix the meta data. If the problem is related to
a field having a name same as a .Net reserved word, there is a field property on a field called
“PropertyName” that you can set and that name will be used for the generated property.

e After you've fixed the meta data, you must re run the batch file to regenerate.
e And then rebuild to confirm your changes have fixed all the problems

e Check in any meta data changes (identify CodeGen fixes as such)

e Check in the generated files.

e Never manually edit the generated files.

info@netquarry.com 2 NetQuarry, Inc.



400 - Coding www.netquarry.com

netQUARRY

Mapper Extensions

The NetQuarry tutorial goes into excellent detail on how to create extensions, but to summarize, there
are two types of extensions. Those that are derived from a basic mapper object and those derived from
a TypedMapper object.

Generic Extension

public class MyExtension : NetQuarry.Data.MapperExtensionKernel

TypedMapper Extension

public class MyTMExtension
NetQuarry.Data. TypedMapperExtension<Comensura.Data.MyTM>

or, if you have a base class that has additional common handling for all typed mapper extensions, that is
derived itself from NetQuarry.Data. TypedMapperExtension

public class MyTMExtension : Comensura.Extensions.TypedExtensionBase<Comensura.Data.
My TM>

Use Generic or TypedMapper Extension?

If you need to create an extension, you are faced with the choice of creating a generic extension, or
typed mapper extension. The biggest question you need to ask yourself is whether the extension needs
to be attached to several mappers, either of the same module, or even disparate modules. This is the
situation with the ExportToExcel extension provided by the core. It adds an Export To Excel menu item
to any mapper it is attached to, and manages the event when the Export To Excel is clicked.

A secondary reason for creating just a generic mapper extension is if you don’t have a typed mapper
generated for the mapper your want business logic for and/or it’s just not worth the effort.

When you know you want to add some more than trivial logic to your extension, then it’s worth creating
the typed mapper extension.

info@netquarry.com 3 NetQuarry, Inc.



400 - Coding

Mapper Extension Events

www.netquarry.com

netQUARRY

The following table describes the events that can be handled from a mapper extension.

Event Description

AuditDelete The mapper has performed a delete operation and any auditing should
be performed in response to this event.

Auditlnsert The mapper has performed an insert operation and any auditing should

be performed in response to this event.

AuditUpdate

The mapper has performed an update operation and any auditing should
be performed in response to this event.

Custom

An event in the range of ExtensionEvents.CustomStart and
ExtensionEvents.CustomEnd has been fired.

FieldBuildFilter

The field is attempting to build a filter from the criteria entered in the
filter by form row of a list, or from the find criteria of a Fin/MultiAdd
screen.

FieldButtonClick

The field's button has been clicked. A button click event is supported in
both the detail and datasheet versions of the mapper.

MailBeforeSend

Generated by the template mailer component just before the mailer
constructs the email to send.

MailAfterSend

Generated by the template mailer component just after the mailer has
sent an email to the recipient.

MapperAfterLayout The mapper has just layed out the mapper's Ul.

MapperAfterLoad The mapper's meta-data has been loaded, fields created, etc, but no
field controls created. This is typically the only opportunity to alter field
CellTypes programmatically.

MapperAfterRequery The mapper has just requeried its operational data.

MapperBeforelLayout The mapper is just about to begin laying out the mapper's Ul.

MapperBeforeRequery The mapper is just about to requery its operational data.

MapperBulkAfterDelete

A bulk delete operation, using this mapper, has been completed.

MapperBulkAfterinsert

A bulk insert operation, using this mapper, has been completed.

info@netquarry.com

4 NetQuarry, Inc.




400 - Coding

%etQUARRY

www.netquarry.com

Event

Description

MapperBulkAfterUpdate

A bulk update operation, using this mapper, has been completed.

MapperBulkBeforeDelete

A bulk delete operation, using this mapper, is being started.

MapperBulkBeforelnsert

A bulk insert operation, using this mapper, is being started.

MapperBulkBeforeUpdate

A bulk update operation, using this mapper, is being started.

MapperCommand A mapper command has been invoked.

MapperExecSQL The mapper is about to execute a SQL statement. The SQL to be
executed is contained in the ExecSQLArgs parameter. Any change made
to the SQL in that parameter cause the altered SQL to be used instead of
the mapper-generated SQL.

OnUnload Notifies the extension that it should perform any cleanup necessary just
prior to being unloaded. (inherited from MapperExtensionBase)

Other Handles an un-recognized event.

RowAfterDelete

The mapper has just completed deleting an entire row into the database.

RowAfterinsert

The mapper has just completed inserting an entire row into the
database.

RowAfterUpdate

The mapper has just completed updating an entire row into the
database.

RowBeforeDelete

The mapper is just about to delete an entire row into the database.

RowBeforelnsert

The mapper is just about to insert an entire row into the database.

RowBeforeUpdate The mapper is just about to update an entire row into the database.
RowCurrent The mapper has just positioned to a different record.
RowExecSQL The mapper is just about to execute a single SQL statement that is row-

specific (e.g. executing an INSERT, UPDATE or DELETE statement).

RowSetDefaults

The mapper has had its values populated from defaults. You now have
the opportunity to modify the default values on the mapper fields. This
event exists to consolidate all the different mapper events where default
values have been set.

info@netquarry.com

5 NetQuarry, Inc.




400 - Coding 2 é n etQU A R RY www.netquarry.com

By far the most commonly handled events are Before/After Insert/Update, MapperBeforeRequery,
MapperBeforelLayout.

Event Arguments
All mapper events are fired with an EAPEventArgs parameter. This section describes what event args
are available and whether the args are specific to certain events only.

Event Argument Details

Args Type When Used

EAPEventArgs Base class for all event args. Passed for all other events, not listed here.
BuildFilterArgs Passed to event when handling the FieldBuildFilter event.
EAPCommandEventArgs | Passed to event when handling the MapperCommand event.
EAPCustomEventArgs Passed to event when handling Custom event.

ExecSQLArgs Passed to event when handling the MapperExecSQL and RowExecSQL events.
MailEventArgs Passed to event when handling MailBeforeSend, MailAfterSend events.

info@netquarry.com 6 NetQuarry, Inc.




400 - Coding n etQU A R RY www.netquarry.com
EAPEventArgs

EAPEventArgs Description

Property/Method

BulkContext A property of type NetQuarry.EventBulkContext. This property is set whenever a bulk operation is
performed. Typically when performing multiple updates through editable list, or multiple deletes from
list view, or multiple inserts, through mult-add process. You can tag your own properties onto the
BulkContext object to provide a way of maintaining contextual information between
insert/update/delete events. If this object is null, there is no bulk operation in progress

Cancel A method that takes a string argument. The string is a message that is presented to the user after the
event has been cancelled. Calling this function also sets the Result property to ExtResult.Cancel.

Error A method that takes a string argument. When called it sets the Result property to ExtResult.Error.
when the event is completed, the error message is presented to the user.

ErrorMessage A property of type string that lets you get/set the error message. It does not set the Result to
ExtResult.Error.

Event Contains an enum value of type NetQuarry.ExtensionEvents that specifies which event is being fired.

Result A property of type NetQuarry.ExtResult, defining what status to return to the platform. By default, the
value is ExtResult.Continue.

ExtResult value Description

Continue The default result status. If you do nothing, execution will continue as
normal processing additional extension code and platform code.

DataChanged When handling the RowSetDefault event, you specify this result to let the
platform know to re-apply the field values from default values.

Continuelgnore Continue as if the cause of the event had not occurred. This is generally
returned in response to events which indicate an anomaly

ContinueNoMoreExt | Your extension may perform a task where you cannot allow any more
extensions to fire and perform additional work. Your extension is the only
one that should fire for a particular event. If this is the case you return
this result to prevent any more extensions being called for this event. For
this to work correctly, your extension must be a higher priority than the
extensions you don’t want the event to be handled

ContinueNoExec Return this status when you don’t want the platform to execute the
default operation, but allow the event to continue.

CancelWhenDone Return this status when you don’t want the operation to complete, but
you want all the extensions to fire

HandledByExt Return this status when your extension has performed a function in place
of the default action about to be executed by the platform. For example
RowBeforelnsert. Returning this status, the platform will not execute any
insert statements. The after events will continue to fire as normal as
though the platform performed the operation. This is similar to
ConinueNoExec.

Cancel Cancel the operation immediately and do not fire the event to additional
extensions.

Error An error occurred and the operation should be aborted.

BuildFilterArgs

BuildFilterArgs Description

Property/Method

Description A string property containing a description of the filter clause that has been applied. This overrides the
default description from the platform and should match the context of the new filter being applied.
This description will appear in the filter caption of the list view. Keep this description short.

Dirty A boolean property determining whether the filter has been modified. This property is automatically
set to true if you assign a new Filter. If you set this to true, without setting a Filter property, then
filtering for the field will be ignored.

Filter A string property where you set the filter to apply. Typically you will analyze the current filter criteria
and construct a different filter criteria to apply instead of the default criteria generated by the platform.

FilterFlags A read only property of type NetQuarry.FieldFilterFlags. This gives you contextual information about
the filter parameters you need to analyze to construct a new filter string.

info@netquarry.com

7 NetQuarry, Inc.




400 - Coding

www.netquarry.com

netQUARRY

BuildFilterArgs Description
Property/Method
ParsedOperand A ready only string property that contains the filter operand extracted from the raw criteria (e.g.

sistartswith::)
The operands you might expect to see are

or::, :and:, not::, i:between::, :icontains::, ::startswith::, ::doesnotcontain::, ::soundslike::, ::null::,
::notnull::, ::doesnotstart::, ::like::, ::notlike::

ParsedValue

The parsed value from the raw criteria entered into the filter by form row.

RawCriteria The value as it was entered into the filter by form row (or the criteria field on a Find/Myulti-Add)
EAPCommandEventArgs

EAPCommandEventArgs | Description

Property/Method

CommandName A string property that contains the name of the command.

Params A property of type System.Collections.Specialized.NameValeCollection. This contains the
querystring parameters in a NameValueCollection. Currently this property is only populated whan
handling Ajax button clicks.

EAPCustomEventArgs

EAPCustomEventArgs Description

Property/Method

Args A read only property of type Object to which you can attach your own properties. Since you are
likely to be generating custom events, you will know what is contained within the args parameter.

ExecSQLArgs

ExecSQLArgs Description

Property/Method

Dirty A Boolean property indicating whether the SQL in the arguments has been changed by the
extension. This property is automatically set to true when the SQL property is updated.

sQL A string property that contains the SQL that is about to be executed. You can replace the SQL with
your own and that will be executed instead.

StatementType A read only enum property of type NetQuarry.Data.ExecSQLArgs.ExecuteStatement. This indicates
what type of SQL is about to be executed. The enum values are...

Unknown, Select, Insert, Update, Delete, LogicalDelete

TableName A read only string property indicating the name of the table on which the SQL will be executed. For

a SELECT statement, this will be the view name.
MailEventArgs

MailEventArgs Description

Property/Method

MailerAttributes A property of type NetQuarry.Services.MailerAttrs. These attrs only contain one enum value,
Journal.

Message A property of type System.Net.Mai.MailMessage. This property gives you access to the mail
message that has been constructed by the template mailer and is about to be sent by the platform.
You can interrogate the mail object to extract any pertinent information and journal it (e.g a fully
rendered html email body)

info@netquarry.com

8 NetQuarry, Inc.




400 - Coding

netQUARRY

www.netquarry.com

Event Handling

This section summarizes some of the actions you may take and want to handle when performing certain
actions.

Action Event Fired

Open a mapper in list view

Event Order

Notes

MapperAfterLoad

FieldBuildFilter

One for every field with filter criteria

MapperBeforeLayout

MapperAfterLayout

MapperBeforeRequery

MapperExecSQL

MapperAfterRequery

RowCurrent

Only if records exist and one for every row

Open a mapper in a detail

Event Order

Notes

MapperAfterLoad

MapperBeforeLayout

MapperAfterLayout

FieldBuildFilter

One for every field with filter criteria

MapperBeforeRequery

MapperExecSQL

MapperAfterRequery

RowCurrent

Open a new detail

Event Order

Notes

MapperAfterLoad

MapperBeforeLayout

MapperAfterLayout

RowSetDefaults

RowCurrent

Save a new record (Popup

window back to list)

Event Order

Notes

MapperAfterLoad

MapperBeforeLayout

MapperAfterLayout

RowSetDefaults

RowCurrent

RowBeforelnsert

RowExecSQL

MapperBeforeRequery

FieldBuildFilter

One for every field with filter criteria

MapperExecSQL

MapperAfterRequery

Auditinsert

RowAfterinsert

RowSetDefaults

RowCurrent

MapperAfterLoad

Display list after popup disappears

FieldBuildFilter

One for every field with filter criteria

MapperBeforeRequery

MapperExecSQL

MapperAfterRequery

RowCurrent

info@netquarry.com

NetQuarry, Inc.




400 - Coding

netQUARRY

www.netquarry.com

Action

Event Fired

Save a new record (Detail
window back to detail)

Event Order

Notes

MapperAfterLoad

MapperBeforeLayout

MapperAfterLayout

RowSetDefaults

RowCurrent

RowBeforelnsert

RowExecSQL

MapperBeforeRequery

FieldBuildFilter

One for every field with filter criteria

MapperExecSQL

MapperAfterRequery

Auditinsert

RowAfterinsert

RowSetDefaults

RowCurrent

End of Save Process

MapperAfterLoad

Re-display detail after save on DIFFERENT mapper

MapperBeforeLayout

MapperAfterLayout

FieldBuildFilter

One for every field with filter criteria

MapperBeforeRequery

MapperExecSQL

MapperAfterRequery

RowCurrent

Save an existing record (Detail to
Detail)

Event Order

Notes

MapperAfterLoad

MapperBeforeLayout

MapperAfterLayout

FieldBuildFilter

One for every field with filter criteria

MapperBeforeRequery

MapperExecSQL

MapperAfterRequery

RowCurrent

RowBeforeUpdate

FieldBuildFilter

One for every field with filter criteria

RowExecSQL

MapperBeforeRequery

FieldBuildFilter

MapperExecSQL

MapperAfterRequery

AuditUpdate

RowAfterUpdate

End of save

FieldBuildFilter

Re-display detail after save on DIFFERENT mapper

MapperBeforeRequery

MapperExecSQL

MapperAfterRequery

RowCurrent

info@netquarry.com

10

NetQuarry, Inc.




400 - Coding

netQUARRY

www.netquarry.com

Action

Event Fired

Update multiple rows through
editable list

Event Order

Notes

MapperAfterLoad

FieldBuildFilter

MapperBeforeLayout

MapperAfterLayout

MapperAfterLoad

Cloned Mapper

MapperBulkBeforeUpdate

Cloned Mapper

FieldBuildFilter

Cloned Mapper, Repeated for each updated row

MapperBeforeRequery Cloned Mapper, Repeated for each updated row
MapperExecSQL Cloned Mapper, Repeated for each updated row
MapperAfterRequery Cloned Mapper, Repeated for each updated row
RowCurrent Cloned Mapper, Repeated for each updated row
RowBeforeUpdate Cloned Mapper, Repeated for each updated row
FieldBuildFilter Cloned Mapper, Repeated for each updated row
RowExecSQL Cloned Mapper, Repeated for each updated row
MapperBeforeRequery Cloned Mapper, Repeated for each updated row
FieldBuildFilter Cloned Mapper, Repeated for each updated row
MapperExecSQL Cloned Mapper, Repeated for each updated row
MapperAfterRequery Cloned Mapper, Repeated for each updated row
AuditUpdate Cloned Mapper, Repeated for each updated row
RowAfterUpdate Cloned Mapper, Repeated for each updated row
MapperBulkAfterUpdate Cloned Mapper
MapperVeforeRequery
MapperExecSQL
MapperAfterRequery
MapperBeforeRequery
MapperExecSQL
MapperAfterRequery
RowCurrent

Delete multiple rows on list view Event Order Notes
MapperAfterLoad
FieldBuildFilter
MapperBeforeLayout
MapperAfterLayout
MapperAfterLoad Cloned Mapper

MapperBulkBeforeDelete

Cloned Mapper

FieldBuildFilter

Cloned Mapper, Repeated for each deleted row

MapperBeforeRequery Cloned Mapper, Repeated for each deleted row
MapperExecSQL Cloned Mapper, Repeated for each deleted row
MapperAfterRequery Cloned Mapper, Repeated for each deleted row
RowCurrent Cloned Mapper, Repeated for each deleted row

RowBeforeDelete

Cloned Mapper, Repeated for each deleted row

FieldBuildFilter

Cloned Mapper, Repeated for each deleted row

RowExecSQL

Cloned Mapper, Repeated for each deleted row

AuditDelete

Cloned Mapper, Repeated for each deleted row

RowAfterDelete

Cloned Mapper, Repeated for each deleted row

MapperBulkAfterDelete

Cloned Mapper

MapperBeforerequery

MapperExecSQL

MapperAfterRequery

RowCurrent

info@netquarry.com

1"

NetQuarry, Inc.




400 - Coding www.netquarry.com

netQUARRY

Action Event Fired

Execute an Action Menu ltem

resulting in a command on a Event Order Notes
detail MapperAfterLoad
MapperBeforeLayout
MapperAfterLayout
FieldBuildFilter One for every field with filter criteria
MapperBeforeRequery
MapperExecSQL
MapperAfterRequery
RowCurrent
MapperCommand

Execute an Action Menu ltem

resulting in a command on a list Event Order Notes
view MapperAfterLoad
MapperBeforeLayout
FieldBuildFilter One for every field with filter criteria
MapperAfterLayout
MapperCommand

Click on a button/link on a detail

or list view Event Order Notes
MapperAfterLoad
MapperBeforeLayout
MapperAfterLayout
MapperAfterLoad Cloned Mapper
FieldBuildFilter Cloned Mapper, One for every field with filter criteria
MapperBeforeRequery | Cloned Mapper
MapperExecSQL Cloned Mapper
MapperAfterRequery Cloned Mapper
RowCurrent Cloned Mapper
FieldButtonClick Cloned Mapper

info@netquarry.com 12 NetQuarry, Inc.




400 - Coding www.netquarry.com

netQUARRY

TypedMapper Objects

TypedMapper objects that have custom functionality added to them should all be placed in the Data
project. This allows that functionality to be shared with other consumers. You can add TypedMapper
objects anywhere in your code base and add different functions to each instance. That is not
recommended.

We create a typed mapper object by deriving the class from the equivalent generated template typed
mapper object. The template object gives you all the type safe declarations for fields on the mapper
that are on the mapper when flavor 0 is applied to the mapper. All fields with an include flavor are not
in a generated TypedMapper.

To declare a typed mapper, you derive your class from the generated class template

public class People : Comensura.Data.Generated.people<People>
public class IkpJobCategories : Comensura.Data.Generated.lkp job categories<lkpJobCategories>

public class CompaniesTemplates : Comensura.Data.Generated.companies_templates<CompaniesTemplates>

More generally

public class TMName : Comensura.Data.Generated.tm_name<TMName>

You give your typed mapper class the name almost exactly derived from the generated class name,
removing any underscores and proper casing the letters for legibility. Your template object is your class.
Then just treat your object like any other class and add public and private methods as appropriate.

Code in Extension or TypedMapper?

A commonly asked question is where to put your business logic. The temptation is to add business logic
to Mapper extensions. Well, the basic rule of thumb is that only decision/workflow/Ul logic is put in the
extension and data manipulation/business logic is performed in the TypedMapper object.

Having said that, there is nothing inherently wrong with putting data manipulation code in an extension
as long as it’s self contained.

If you add data manipulation code that is likely to be shared then you should probably think about
putting that code as a method on the TypedMapper object. The alternative to sharing code via the
TypedMapper is to share the code in the Common class, but as a static method.

So, back to the TypedMapper object. Remember a TypedMapper is just a mapper and whenever you
call your TypedMapper functions, your logic is going to read and write data from the current row. Of
course there are many things you can do in your functions but they all relate to some operation
controlled or directed by the values in the current row.

info@netquarry.com 13 NetQuarry, Inc.



400 - Coding

Page Extensions

n etQU A R RY www.netquarry.com

Page extensions are used to handle events from certain types of page. At the moment there are two

types of page that support extensions and fire page events. Console pages and Wizard pages. To create

a page extension, you create a module that derives from NetQuarry.PageExtensionBase. This

extension handles the following events

Event

Description

ConsolePaneBeforelayout

Called on each page element when a console page is loaded. At this point in the
page lifecycle, the page element’s mapper does not contain any data, so you can
only interrogate the querystring parameter data in order to make decisions
regarding the page/page element behavior.

After this even has completed, you will not be able to modify the following page,
or pane attributes...

e Whether the pane can be expanded/collapsed

e  Pane header visibility

e Pane element drag/drop (this is a global attribute setting on the page
itself)

e  Pane visibility

Currently you should not change the “FixedAt...” position attributes of the
console pane.

Also you should not access the LinkAdd, LinkList, LinkNew objects in this event as
the objects have not yet been added to the console pane.

ConsolePaneBeforeRequery

Called on each page element after all the page elements have been initially
loaded. At this point in the page lifecycle, the page element’s mapper does not
contain any data, so you can only interrogate the querystring parameter data in
order to make decisions regarding the page/page element behavior.

At this point, it’s too late to change the behavior of the following page, or pane
attributes...

e  Whether the pane can be expanded/collapsed

e Pane header visibility

e Pane element drag/drop (this is a global attribute setting on the page
itself)

e Pane visibility

However, at this point you could modify any other panel attributes to modify
panel behavior.

info@netquarry.com

14 NetQuarry, Inc.




400 - Coding

www.netquarry.com

netQUARRY

Event

Description

ConsolPaneAfterRequery

Called on each page element after all the page elements have been initially
loaded. At this point in the page lifecycle, the page element’s mapper has been
requeried. Now you can make decisions on page/page lement behavior based on
the data in the mapper object (as well as querystring parameters).

At this point, it’s too late to change the behavior of the following page, or pane
attributes...

e Whether the pane can be expanded/collapsed

e  Pane header visibility

e Pane element drag/drop (this is a global attribute setting on the page
itself)

e Pane visibility

However, at this point you could modify any other panel attributes to modify
panel behavior.

WizardPageload

Called when a wizard page is loaded.

WizardNext

Called when the user clicks on the next button. Gives you the chance to modify
the workflow of the wizard pages by letting you specify what the next page to
display should be.

WizardPrevious

Called when the user clicks on the previous button. Gives you the chance to
modify the workflow of the wizard pages by letting you specify what the next
page to display should be.

WizardCancel

Called when the user clicks on the Cancel button. Nothing is saved. You have the
ability to change the CancelAction navigation parameters in order to navigate to
a different page than those specified in meta data.

WizardFinish

Called when the user clicks on the Finish button. This event is fired before any
mappers are saved and gives you one last chance to modify instance values in the
wizard, or make the mapper dirty before the save. You also have the ability to
change the FinishAction navigation parameters in order to navigate to a different
page than those specified in meta data.

WizardDataExchange

Called when the user clicks on either the Next button, or the Finish button. The
primary purpose of this event is to get access to the data from a page just after
the data has been transferred from the page to the mapper and into the
UserData collection. When this event is fired, the mapper and user data has all
the data entered from that page.. When this event is fired, an event argument is
provided to tell you if the event is fired prior to moving to the Next page, or prior
to Finishing.

info@netquarry.com

15 NetQuarry, Inc.




400 - Coding

n etQU A R RY www.netquarry.com

What'’s in the Console Event Arguments?
When a Console Pane event is called, you receive the console pane firing the event in the sender
argument. Additional contextual information is passed via the ConsoleEventArgs object.

The following useful objects are available to you from the sender object.

IConsolePane Parameter What do you get

sender The console pane firing the event.

sender.Console.Pagelnfo The page info of parent container of this console page
element.

sender.Elementinfo The page element info object of the console pane firing
the event.

sender.Renderer The user control object that is rendering into the console
pane. In order to manipulate the properties of the object,
you have to know the object type of the pane to render
and cast the sender.Renderer to that object type.

The ConsoleEventArgs parameter currently only returns a result property on e.Result. There are no
other useful properties at the moment.

What'’s in the Wizard Event EventArgs?
There are two sets of event args for wizard page events. For WizardDataExchange events, you get
WizardDataExchangeArgs. For all other events, you receive the WiardPageEventArgs.

The following useful objects and functions are available to you from the WizardPageEventArgs

parameter.

WizardPageEventArgs Parameter What do you get

e.NextPage The index of the next page expected. You can set this
index to change the next page

e.Wizard.GetPageNumber(pageName) The index of a page in the wizard given the pages name

e.WizardPage.Mapper The mapper on the page that caused the navigation (either
next or previous)

e.WizardPage.PageElementinfo Information about the page of the wizard that cause the
navigation (either next or previous)

info@netquarry.com 16 NetQuarry, Inc.




400 - Coding

n etQU A R RY www.netquarry.com

WizardPageEventArgs Parameter

What do you get

e.WizardPage.UserData

Access to the in memory cache of wizard data

And for WizardDataExchange events.

WizardDataExchangeArgs Parameter

What do you get

e.ExchangeType

Indicates whether the data exchange is occurring as a
result of the Next button being pressed (e.ExchangeType
== WizDataExchangeType.NextPageToUserData) or the if
the finish button was pressed (e.ExchangeType ==
WizDataExchangeType.FinalPageToUserData).

e.Wizard.GetPageNumber(pageName)

The index of a page in the wizard given the pages name

e.WizardPage.Mapper

The mapper on the page that caused the navigation (either
next or previous)

e.WizardPage.PageElementinfo

Information about the page of the wizard that cause the
navigation (either next or previous)

e.WizardPage.UserData

Access to the in memory cache of wizard data

Event Handling

It is important to understand when the page events fire and what data is available during the event

Console Pane Events

Action Event Fired

Navigate to console

Event Order

Notes

ConsolePaneBeforelLayout Event fired sequentially on each console pane. Before further

events are fired

ConsolePaneBeforeRequery | Fired on each console pane

ConsolePaneAfterRequery Fired on each console pane

info@netquarry.com

17 NetQuarry, Inc.




400 - Coding

Wizard Page Events

netQUARRY

www.netquarry.com

Action

Event Fired

Navigate to wizard

Event Order

Event Arg Info

WizardPageload

e.NextPage ==

Next Page (Page 1 to Page 2)*

Event Order

Event Arg Info

WizardPagelLoad e.NextPage == 1 (page load of the leaving page)
WizardDataExchange | e.ExchangeType == WizDataExchangeType.NextPageToUserData
WizardNext e.NextPage ==

WizardPageload e.NextPage == 2 (page load of the next page)

Previous Page (Page 2 to Page 1)

Event Order

Event Arg Info

WizardPagelLoad e.NextPage ==
WizardNext e.NextPage ==
WizardPageload e.NextPage ==

Cancel (Any page)

Event Order

Event Arg Info

WizardPagelLoad

e.NextPage == Page num of page clicked

WizardCancel

e.NextPage == Page num of page clicked

Finish*

Event Order

Event Arg Info

WizardPageload

e.NextPage == (last page)

WizardFinish

e.NextPage == (last page)

WizardDataExchange

e.ExchangeType == WizDataExchangeType.FinalPageToUserData

* Note the difference in event firing order between the Next Page handling and the Finish handling. In

the Next Page events, the WizardDataExchange occurs before the WizardNext event. In the Finish

events, the WizardDataExchange occurs after the WizardFinish event. This also implies that the values

from the final page of the wizard are not transferred from the page to UserData nor Mapper in the

WizardFinish event.

info@netquarry.com

18 NetQuarry, Inc.




400 - Coding www.netquarry.com

netQUARRY

Related Mapper Context
Frequently you want to know about the mapper of the parent record. This is particularly the case when
you want to manipulate the behavior of a mapper when used to display subform records.

A mapper will only have a valid RelatedMapperContext when the page is navigated to, with a parmop
and a parrk query string parameter. (Or parmop, parval, parkey parameters if no parrk).

These query string parameters identify the parent information sufficiently to instantiate a mapper
requeried onto the row of the parent. Strictly speaking you could instantiate the parent mapper object
yourself after interrogating the query string parameters, but the RelatedMapperContext object hides all
that complexity from you.

The RelatedMapperContext property on a Mapper is accessed from the ParentContext property

using NetQuarry.Data;
using Comensura.Data;
namespace Comensura.Extensions

{
public class MyClass : NetQuarry.Data.TypedMapperExtension<Comensura.Data.MyTypedMapper>
{
public override void MapperBeforeRequery(Comensura.Data.MyTypedMapper sender, EAPEventArgs e)
{
RelatedMapperContext rc = sender.Mapper.ParentContext;
}
3
3
Property/Method Description
GetParent An overloaded method to instantiate a live parent
mapper object.
GetParent() Providing no parameters you will get a parent mapper

loaded and requeried to the row specified by the value of
the RowKey property

GetParent(string parentKey) You can override the parent mapper to obtain an instance
of a different mapper but that mapper will be filtered to
the value of the RowKey property.

GetParent(string parentKey, string parentRowKey) You can override both the parent mapper and parent row
key to get an instance of a mapper.

Key The name of the parent mapper.

Rowkey The value of the rowkey (primary key or uniquekey) of

parent mapper. The parent mapper knows what field on
the parent mapper this value applies to. If all you want to
know is the value of the parent’s rowkey, then this is the
only property you’ll need to access.

info@netquarry.com 19 NetQuarry, Inc.




400 - Coding

n etQU A R RY www.netquarry.com

When you use the GetParent method and you have an instance of a mapper object, you shouldn’t

explicitly close the object. The lifetime of the mapper attached to the RelatedMapperContext object is
managed by the RelatedMapperContext object.

If you close the mapper and there are other extensions attached to the same mapper, all expecting to
use the RelatedMapperContext, once the mapper is closed, their code will likely fail.

info@netquarry.com 20 NetQuarry, Inc.



400 - Coding www.netquarry.com

netQUARRY

Task Handlers
Task handlers are components that are derived from the NetQuarry.ScheduledHandler. These
components are used to schedule processes via the scheduler.

There is one event handler method for the scheduled handlers class. OnExec. When you create a new
class to handle a scheduled event, implement something like the following example.

namespace Comensura.Tasks.Invoice
{

/// <summary>

/// Scheduled Task handler for invoicing.

/// </summary>

public class InvoiceHandler : NetQuarry.ScheduledHandler
{

private IDatabase _database;

private IAppContext _app;

/// <summary>

/// Add a constructor if necessary
/// </summary>

public InvoiceHandler()

{
}

/// <summary>

/// Handles the timer event

/// </summary>

/// <param name="cmdID">The commmand from the ScheduledTasks table.</param>
/// <param name="args''></param>

/77

protected override void OnExec(int cmdID, params object[] args)

{

_database = this.Application.DataDB;

_app = this.Application;

ProcesslInvoiceQueue();
}
/// <summary>
/// ProcesslnvoiceQueue - Main Procedure for InvoiceHandler Trigger
/// </summary>
/// <param name="database''’></param>
public void ProcesslinvoiceQueue()
{
string where = "some filter";
// Create a mapper reader to iterate through some records.
using (TypedMapperObjectName map =
TypedMapperObjectName.OpenReader (_app, where, 0, MapperAttrs.NoRowRequery))
{
while (map.-MoveNext() && !this.IsServiceStopped)

{
// Do some stuff.

info@netquarry.com 21 NetQuarry, Inc.



400 - Coding

www.netquarry.com

netQUARRY

What your handler does is not going to affect the basic ideas of the above code.

e Your constructor will perform some basic initialization if any

e You implement the OnExec event handler. If necessary, you read the cmdID to differentiate

which task to run. If your handler has only one use you can ignore this parameter.

e You cache the app and database objects.

e  Your main handler functionality is not in the OnExec method.

e More than likely your handler will perform an operation on many records and therefore your

code will contain a loop. You must allow the loop to be interrupted if the scheduler has been

requested to stop (via windows services management tool). If the task has been interrupted,

the IsServiceStopped property would be set to true.

Setting up a Scheduled Task

To set up a scheduled task, first step is to create a task handler module as described above.

Then, you have to add your new component to the studio as a Handler component. As with adding any

component to the system, you associate with a module, give it a name and specify the appropriate

component information.

Once you have added the task as a handler component, you can add a new Scheduled Task to the

studio.

Name Description

Task Name The readable name of the task.

Component The name of the Handler that performs the functions of the task

Interval Mins

The interval in minutes when the Scheduler will tell the task to perform its
function.

Command Id

A single Handler may be configured to perform many different functions. If that
is the case, you can associate each piece of functionality in the handler with a
specific Command ID, so that when you handle the request, you can process the
correct function.

Enabled

Determines whether the task is enabled or not. When you check in your meta
data, you must remember to disable your task from running. It should not be
enabled by default as it will be running in production when it’s not ready to run.
You enable a task on a machine by setting the appropriate UPDATE statement in
the cnet_data-migration.sql file. Look at the section
ENABLE_SPECIFIC_SCHEDULED_TASKS

Restrict Times

You may want to have a task run at a regular interval but during a certain time
of day. Check this box to specify a time restriction for interval based tasks.

Start Time

The time at which your task should start running at the required interval

End Time

The time at which your task should stop running at the required interval

info@netquarry.com

22 NetQuarry, Inc.




400 - Coding

www.netquarry.com

netQUARRY

Name

Description

Run Once Time

If you want the scheduler to run at a specific time every day, you would set the
Run Once Time. The scheduler will fire your task once per day. This setting
overrides the Interval property.

Attributes

Only one attribute is currently valid and that is Suynchronous. By default all
tasks are asynchronous and they will run simultaneously on different threads
(depending on the interval and time restriction properties). If you set a
scheduled task to synchronous, it will always run before any asynchronous tasks
have started. Only when synchronous tasks have completed, will the
asynchronous tasks be allowed to run.

Be careful with synchronous tasks and only to have them run at large intervals
(like once per day). If the period is too short, they can run in preference to
any/all asynchronous tasks and not allow asynchronous tasks to run.

Param Txt

Any text arguments you might want to pass to your task. They will be passed to
your handler in the Arguments parameter.

Tasks have an optional property, specifying a machine name on which the task should run. If no

machine name is provided, then the task will run on all machines where the scheduler is running.

You can also add custom properties to your scheduler task, but it might be better to provide an

operational data table to configure task behavior so end user administrators (and developers) can

manipulate task behavior from your front end application and not have to log into an app server and use

the studio.

info@netquarry.com

23 NetQuarry, Inc.




400 - Coding

netQUARRY

Creating a new extension

www.netquarry.com

We have a dev studio wizard installed that creates a new mapper extension. Here we will describe the

manual process for creating a new mapper extension.
In dev studio, do File, New, Project

Enter the information appropriate to your extension

New Project 21X
po [oe
Project types: Templates: 28| B
-~ Business Intelligence Projects Visual Studio installed templates
[ Visual C#
[#- Other Languages (Al Windows Application i5#]Class Library
[#- Other Project Types =8 Windows Control Library (2 Console Application

-El:rystal Reports Application
ng ASP.NET Web Application
L MetQuarry. Extension

My Templates

-4 Search Online Templates. ..

LﬁDevice Application
Ig ASP.MET Web Service Application

A project for creating a C# dass library (.dll)

Mame: I MyExtension
Location: I Ci\MetQuarryCustomers \Comensura\Source MapperExts j Browse... |
Solution: ICreate new Solution j [T Create directory for solution

Solution MName: I MyExtension [T Add to Source Control

Ok, I Cancel

Give your project a name and make sure you’ve set the location to your MapperExts folder. Click OK.

That creates an initial folder structure as follows

info@netquarry.com 24

NetQuarry, Inc.




400 - Coding

netQUARRY

&% C:\NetQuarry\Customers\Comensura\Source\MapperExts\MyExtension

J File Edit View Favorites Tools Help

www.netquarry.com

=10 x|

J Address I@ C:\MetQuarry\Customers \Comensura\Source MapperExts \MyExtension

jGu

J (JBack - ) - T |):' Search |~ Folders | o=

Folders

=

H ) Datz A

= IC5) MapperExts

I Lib

|5 Assignments
I candidateactivity
I) Cases
I Companies
|5 CompaniesBuildings
I CustomCodes
IC3) Divisions
|5 EmailComposeDetail —
IC5) Expenses
|5 ExportFiles
I3 ExternalDocuments
I3) Identity
I3 Impart
I3 InvoiceDetails
I3 Invoices
IC3) LogicalDelete
B D MyExtension
I bin
=) obj
I Properties

[ [ OnsiteMananers _I"

Mame = Size | Type

ICbin File Folder

[Chobj File Folder
|CiProperties File Falder

#] Class1.cs 1KE Visual C# Source file

@MyExt&nsinn.cspmj
ﬁMyExt&nsinn.sln
| j:' MyExtension.suo

2KB Visual C# Project file
1KE Microsoft Visual Studic
QKB Visual Studio Solution

|}' objects (Disk free space: 46.9 GB)

11.4KB

| ‘-_-i My Computer

&
/4

In your studio, modify the following settings.

e Add the using statements

e correct the namespace

e declare your class and derive from the appropriate base class.

e change the project name to the fully qualified namespace name

e change the name of the class file to be the same as the class name

info@netquarry.com

25

NetQuarry, Inc.



400 - Coding

netQUAR RY www.netquarry.com

icrosoft Visual Studio =[ax]
Ele Edit View Refactor Project Build Debug Data Tools Window Community Help
-E S| # G B9 S B | WP Debug ~ Any CPU - | [# ContinueText 'Wﬂ@*"ﬂ'a
(b um B SE tex |- o i % b a2 2 0F3 8886 R,
My ionClass.cs* |
IO[S Comensura. Extensions.MyExtension j I

Eusing System;
using System.Collections.Generic;
usipg-3
G=zing NetQuarry;
using NetQuarry.Data;
using Comensura.Data;
using Comensura.Commop

Hpamespace Comensura.Extensions

{
LJ—] public class MyExtension : NetQuarry.Data.TypedHMapperExtension<Comensura.Data.HMyExtensionTH>

yETEm. IEX

{
o H
Ly -
« | Ll—l
Find 1 -3 X
BIAB S

4
) Error List | 5] Find Results 1 |5 Find Results 2

Ready

Ln 11 Col 5 chs mNs
Add references to NetQuarry and Comensura classes
20 %
NET | com | Projects | Browse Recent |
Component Name + | Type | Version | Source
Comensura, BusinessObjects. dil i MNetQuarr
AP, Ma| . e
EAP.Services,Pop3.dll .0.0, C:\NetQuarr
EAP.WebControls. dll File 2.0.0.1 C:\NetQuarr
EAP.WebMappers.dll File 2.0.0.1 C:\NetQuarr
iLuxCars. Common.dll File 2001 C:\NetQuarr
iLuxCars.Common.dll File 2.0.0.1 C:\NetQuarr
iLuxCars.Data.BusinessObjects.dll Filz 2.0.0.1 C:\NetQuarr
iLuxCars.Data.BusinessObjects.dll File 2.0.0.1 C:\NetQuarr
Microsoft., VisualBasic NET 2.0.0.0 C:\WINDOW
System.Web NET 2.0.0.0 C:\WINDOW,
1] | i
OK | Cancel |
i
Be Et Vew Poect Qi Debug Dgls Tock Wndow Communily Help
2 - [, | AP Cebug + &y CPU | [ ContrmeText = e B | )
e ar =g P B n SR
=l e[S

|
[ Solubon MyExtension’ (1 praect]

£ F Comensura Ftensions MyFrtension

#- 5l Propertes

B i References

-3 System

-3 Systen. Ciata
-3 System

i HetQuarzy.Data.Typ 4] MyExaensionClass.cs

Ly .
2Bt Lisk| 5] Fnd Resuts 1 [ Fnd Resalts 2

Ready

info@netquarry.com 26 NetQuarry, Inc.



400 - Coding

netQUAR RY www.netquarry.com

Add a project.build file. This ensures your component is included in the build process. The best thing to
do here is copy a build file from an existing project. Even easier is to drag a project.build file from
explorer into the project

Make the changes highlighted

&0 MyExtension - Microsoft Visual Studio alglﬂ

File Edit View Project Buid Debug Data Tools Window Community Help

i@'ﬁ]'ﬁﬂﬁl*'ﬁﬁ_‘&.l*’]v(‘lvﬁv_‘j‘,‘PEPDebug - Any CPU v|@ConﬁnueText 'lﬂﬁﬁ%avﬁ
i umom |5z e @i B RE R L 0P3ERNARR,
project.build* |~ MyExtensonCiass.cs* T - sion’ (1 proj... v 3 X

] %

B <project namg="MyExtension extension build file" default="rebuild">
\; Solution 'MyExtension' {1 project)
<property name="solution" wvak@le="Comensura.Extensions.MyExtension"/> E| @ C - 1y

- | Properties
E <target name="clean" description="Delete all previously compiled binaries."> i

] Assemblylnfo.cs
<delete> | References
<fileset> - -3 Comensura, Common
{3 Comensura.Data

<include name="%%/bin/**" />
<include name="**/obj/**" />
<include name="**/%_ gug" />
<include name="**/% ypger" />

r </filezet> < System.Data
</deleter 2 Syshel.'n.XmI
</targety> yEXTEMEuntla
-
| | Ld
PIAB =&

w0

4
_‘BErmr List |55 Find Results 1 [ Find Results 2

Ready

Now update the AssemblyInfo.cs file. Again, copy or drag from another project and update

I =[Ol x|
indow  Community Help

} Debug - Any CPU ~ | [ ContinueText = r.‘a e | " &
IHZH2be|fE=20P3u8as R,

ution E

2| @

'_m Solution "MyExtension’ {1 project)

[=}- ‘.‘E Comensura.Extensions.MyExtension
E| I Froperties
i e ] AssemblyInfo.cs

Destination File Exists ) ll = =4 References

{2 Comensura, Common

13 Comensura,.Data

file™ default="rebuild">

4
[»]]X%

‘a.Extensions.MyExtension™/ />

all previcusly compiled binaries."™>

A file with the name 'AssemblyInfo.cs’ already exists, Do you want to
! replace it?

™ apply to all items

{3 System.Data

i 20 System.¥ml

----- ] MyExtensionClass.cs
----- _11 project.build

info@netquarry.com 27 NetQuarry, Inc.



400 - Coding

netQUARRY

Update the highlighted parts as appropriate

rosoft Visual Studio

www.netquarry.com

Edit WView Refactor Project Buid Debug Data Tools Window Community Help
- EH @ $ B9 ™ S5 | P Debug
b o omo@| 5= ,‘Hex|E-i'E‘=&,lg,A?|

* Any CPU ~ | [# ContinueText

ZE2|0P3 aBa5R

- | Ak B g

Asemblv]nfm‘rpwject.bui\d* r MyExtensionClass.cs* ]

]
X

| =)

4

8 =]

Eusing System.Reflection;
L using System.Runtime.CompilerServices;

I
// General Information about an assembly is controlled through the following
// =et of attributes. Change these attribute wvalues to modify the information
// associated with an assenmbly.

I

[assembly: AssemblyTitle ("Comensura.NET
[assembly: AssemblyDescription("Comensura.NET

Extension™) ]
Extension")]

[assembly: AssemblyCompany (Comensura.Common.Build.Info.Company) ]
[assembly: AssemblyProduct (Comensura.Common.Build.Info.Product)]
[assembly: AssenmblyCopyright (Comensura.Common.Build.Info.Copyright)]
[assembly: AssemblyTrademark (Comensura.Common.Build.Info.Trademark) ]

// The AssemblyVersion should RLWAYS be fixed, this simplifies loading considerably.
// Good discussion on this topic: hoop://dotnet.meecholland.com/message/131375.833px
// and hrep://blogs.msdn.com/suzcook/archive/2003/05/29/57148 . aspx

[assembly: AssemblyVersion(Comensura.Common.Build.Info.AssemblyVersion)]

ff FileVersion should increment (note that has to be done externally). This allows an installer
ff (if you use one) to copy the correct and latest version during an install.

m Solution ‘MyExtension' {1 project)

I*]

=

G Tyl

|\ Properties

- %] AssemblyInfo.cs
| References

i~ -3 Comensura,Comman
{3 Comensura.Data
+J EAP.Caore

{2 EAP.Mapper

MyExtensionClass.cs
."1 project.build

BIAB| % #4

Tamsemhlie D=semnleFi]sTer e on (Camenanra Comman Bnild Tnfn FileVersinon) =
| | »
Find Results 1 - 3 X

A4

-

o

|y Errer List | S Find Results 1 |5 Find Results 2

Ready

Ln 10 Col 58 Ch 58

NS v

Then right click on the project file and choose properties, and change the entries as marked

&0 MyExtension - Microsoft Visual Studio

File Edit View Project Build Debug Data Tools Window Community Help
A-E-EH @] KRR @B |4 Db
E 5= (= Hi = |
ik nomo@ | L2 L ‘ ex | i B

* Any CPU ~ | [# ContinueText

T =R

8 =]

D Solution 'MyExtension' {1 project)

= G Tyl

[Comensura. Extensions.MyExtension (lc\
Debug Output type:
j Assembly Information... |

IC\ass Library

Resources
Settings Startup object:
I(Nut zet) j
Reference Paths
Resources
Signing * Icon:
I(Defaultlcan) j |D

" Resource File:

| ]

(@ Ext...s.My ion* | blyInfo.cs™ | project.build® |~ MyExtensionClass.cs* |
Application®
Configuration: |MfA - Flatform: [N/A -
Build
TIEmeT Default == s
Build Events T
nmEnsura.Exhens\nn5|

|\ Properties

Lo 8] Assemblylnfo.cs
| References

{3 Comensura.Common
{3 Comensura.Data
{3 EAP.Core

«(2 EAP.Mapper

{2 System

{2 System.Data

{1 System.Xml
MyExtensionClass.cs
,"1 project.build

|y Errer List | = Find Results 1 [ Find Results 2

Ready

info@netquarry.com 28

NetQuarry, Inc.



400 - Coding

www.netquarry.com

netQUARRY

Now build the project just to make sure (even though you have nothing in it yet)

Now you have to add your extension to the meta data so it can be referenced by a mapper as an

extension.

In NQ studio, go to Components, Extensions and add the following data (appropriate to your extension)

Component Value
Column

Module MyModule
Name MyExtension
Component Type | Extension

Component Name

Comensura.Extensions.MyExtension

Assembly Name

Comensura.Extensions.MyExtension.dl|

Assembly Path

C:\NetQuarry\Customers\Comensura\Source\MapperExts\MyExtension\bin\debug

Assembly Path
Prod

%NQROOT%/Apps/cnet/bin

Attributes

Now you can refer to your extension in the list of extensions.

e Run the debug build batch file to make sure your component really is going to be included in the
daily build.

e Checkin
0 Comensura.Extensions.MyExtension.csproj
O project.build
0 your class files
O Properties\AssemblylInfo.cls
e DO NOT check in solution file Comensura.Extensions.MyExtension.sIn

e Make sure you send us an email so we can add your component to the installer.

info@netquarry.com 29 NetQuarry, Inc.



www.netquarry.com

400 - Coding netQUARRY

Module Naming Rules

1. All NetQuarry.Mapper extensions should be named the same as the module/mapper that they
primarily extend. They should be stored in a folder named $/Source/MapperExts/ where the
name of the folder is the same as the mapper extended. For example, for the people Mapper,
the extension is stored in the “S/Source/MapperExts/People” folder.

2. All code should have a namespace starting with Comensura. For example, the common project is
Comensura.Common, the Data project (where the derived TypedMapper objects live, the
namespace is Comensura.Data.

3. Assemblies should be named the same as the primary namespace. For example,
Comensura.Common.dll, Comensura.Data.dll.

4. Only the project file should be checked in, NOT the solution file. The project file name should be
the same name as the assembly (with the proper extension). For example, for the People
extension, the naming works like this:

e Project File: Comensura.Extensions.People.csproj
e Assembly File: Comensura.Extensions.People.dll
e Extension Namespace: Comensura.Extensions

e Extension Class: Comensura.Extensions.People

e Extension Folder: Source\MapperExts

e TypedMapper: Comensura.Data.People

e PageExtension Class: Comensura.PageExts.People
e PageExtension Namespace: Comensura.PageExts
e PageExtension Folder: Source\PageExts

e Task Namespace: Comensura.Tasks

e Task Class: Comensura.Tasks.PeopleTrigger

e Task Folder: Source\Tasks

info@netquarry.com 30 NetQuarry, Inc.



400 - Coding www.netquarry.com

netQUARRY

Saved Filters

Saved filters provide a mechanism for filters on a mapper to be persisted. The platform itself uses Saved
Filters to remember the pinned items on datasheet view, for remembering filter criteria for reports and
bulk mailer.

The best place to start this is with describing the properties and methods of a SavedFilter object.

Constructor Description

SavedFilter Full constructor for the SavedFilter class.
The constructor takes an application object and a database object in the
constructor.

The application object is required to allow the new SavedFilter to be added to
the application’s Filters collection and the database object is required for the
filter to be persisted to the database.

info@netquarry.com 31 NetQuarry, Inc.




400 - Coding

n etQU A R RY www.netquarry.com

Properties

Property Name Description

Attributes The attributes for the filter. The attributes are from the FilterAttributes
enumeration. The attributes alter the behavior of the filter.
Some of these attributes are not typically set by an end user and are specified by
inference when the SavedFilter is created.

Member Name | Description

Static This view consists of a set of keys (vs. a query filter).

StaticFilter This view consists of a SQL IN clause filter with a set of keys. This is for
future use to support static filtering against databases that don’t have
NetQuarry schema tables to store filter criteria. The

Temp This view is temporary and can be deleted any time after its end_dt.

For this to have any effect, the SavedFilter must also have its EndDate
property defined.

Hidden This view is not to directly selectable in a Ul. This attribute is not yet
supported.

Sorted This view contains a sort clause. This attribute is not used

KeyString The key for this item is a string (vs. numeric). If you create a
SavedFilter manually, you have to specify one of the key type
attributes. If you create a saved filter via the Mapper Exec, the key
type is determined automatically from the type of the primary key field
on the mapper.

KeyNumeric The key for this item is numeric (vs. string). If you create a SavedFilter
manually, you have to specify one of the key type attributes. If you
create a saved filter via the Mapper Exec, the key type is determined
automatically from the type of the primary key field on the mapper.

KeyGuid The key for this item is a GUID (vs. string). If you create a SavedFilter
manually, you have to specify one of the key type attributes. If you
create a saved filter via the Mapper Exec, the key type is determined
automatically from the type of the primary key field on the mapper.

DeleteAfterUse The consumer of the filter may delete the filter when finished with it.

In order to differentiate whether it’s safe to delete a SavedFilter, when
creating the filter, you can set this attribute to indicate it should be
deleted when it’s no longer used.
Setting and consumption of this attribute is completely under the
control of the end user and not the platform.
CreateDate The date/time at which the filter was created. This property is initialized in the
constructor of the SavedFilter object.
CreatorID The creator of the filter.
If the property has not been set by the time the SavedFilter object is saved it is
defaulted to the logged in user.
Criteria The criteria use to create the filter. This XML stores criteria information that can
be used to maintain the filter.
Description The localized description of the filter.

info@netquarry.com

% NetQuarry, Inc.




400 - Coding

%etQU ARRY www.netquarry.com

Property Name

Description

EndDate

The UTC date/time at which the filter expires.

Setting the EndDate can perform two functions. If the EndDate is set, when the
EndDate is passed, the filter is no longer loaded in the application’s Filters
collection. You would also need to set the EndDate property if you want the
filter to be a temporary filter (set the Temp attribute). This means the filter
specification will also be deleted from the database when the EndDate is passed.
If you set the EndDate property, you probably also want the SavedFilter to be a
temporary filter.

Filter

The SQL filter clause for the filter. Note that for true static filters the filter clause
will be a subquery against the xot_saved_filter_keys table. The filter criteria will
change to the subquery on xot_saved_filter_keys when a dynamic filter is
converted to a static filter.

When you manually create a SavedFilter, you would need to set this property.
Using the Mapper Exec, the Filter property is set from the union of all the filters
on the mapper creating the SavedFilter.

From

The SQL FROM clause (typically a table or view name) for which the filter is
intended.

When you manually create a SavedFilter, you would need to set this property.
Using the Mapper Exec, the From property is set from mapper’s View property.

The unique (GUID) ID for the filter. The ID serves as the key in the SavedFilters
collection.

This property is defaulted in the constructor of the SavedFilter. It is this unique
ID that can be passed in the &Fltid= querystring parameter to have a mapper
apply a saved filter associated with that key.

KeyColumn

The column in the underlying table containing the single primary key uniquely
identifying a row in the table. This key is used in filter clause building.

If the wrong key column is specified, the filter results will be unexpected, or at
worse, return no results.

When you manually create a SavedFilter, you would need to set this property.
Using the Mapper Exec, the KeyColumn property is set from mapper’s PK
property. If the there are multiple primary keys on the mapper, the first primary
key is used. In that case it’s best to specify the UniqueKey property on one of
the fields on the mapper. In that case the UniqueKey field will be used as the
key column.

info@netquarry.com

33 NetQuarry, Inc.




400 - Coding

%etQU ARRY www.netquarry.com

Property Name

Description

Keys

The list of keys for a static filter.

If you manually create a SavedFilter that is static, you set this property as a
NetQuarry.StringSet (which is derived from the .Net StringCollection). You can
set the property directly, or add/remove individual keys using the Add or
Remove methods of the StringSet object.

After adding/removing static keys, you must save the saved filter for the changes
to be persisted.

The Keys property is lazy loaded. On the first get, we then load the keys from
the database.

KeysLoaded

Gets/Sets a boolean value that indicates if the Keys for this filter have been
loaded.

This property is set automatically when the LoadKeys method is called on the
SavedFilter. This occurs when the Keys property is accessed the first time.

LocaleKey

The locale of the base filter. Note that if localized text is available for the filter it
will be used in place of the original, non-localized text from this locale.

If the property has not been set by the time the SavedFilter object is saved it is
defaulted to the current locale of the session.

ModuleKey

The module to which this filter belongs.

When you manually create a SavedFilter, you would need to set this property.
Using the Mapper Exec, the KeyColumn property is set from mapper’s Module
property.

Moniker

The pseudo-unique moniker for the filter. Ideally, this should be unique within
the SavedFilters collection, but is not guaranteed to be so.

When you manually create a SavedFilter, you don’t need to set this property.
This property is not set when using the Mapper Exec to create a SavedFilter.

MOP

The module to which this filter belongs.

When you manually create a SavedFilter, you don’t need to set this property.
Using the Mapper Exec, the MOP property is set from a combination of the
mapper’s module and page property, rather than its MOP property.

If you don’t set a MOP property on your SavedFilter, it will not be available to
new session instances through the Application’s Filters collection. When that
collection is loaded, the MOP of the filter is checked against the list of MOP’s
available to the user logging in. If there is no match, the filter is not loaded.

Also if you use the Mapper Exec to create your SavedFilter, remember that the
MOP property is defaulted from the mapper’s properties. For a manually
created mapper, those MOP related properties are not set.

info@netquarry.com

34 NetQuarry, Inc.




400 - Coding

%etQU ARRY www.netquarry.com

Property Name

Description

Name

The localized, natural language name of the filter.

The name of the filter is optional. The filters are loaded and keyed from the ID
property, rather than the name. If you provide a name it means you can search
for the filter by name on the application’s filters collection.

OwnerlID The owner (if any) of the filter. If no owner is specified then the filter is globally
available.

Sort The sort clause for the filter, if any.
This property is optional.

StartDate The UTC date/time from which the filter is valid.

This is not yet implemented.

info@netquarry.com

35 NetQuarry, Inc.




400 - Coding

n etQU A R RY www.netquarry.com

Methods

Method Description

Close Close the filter.

This method is not implemented.

Convert Overloaded. Convert the Saved Filter from one form to another.

The Convert method takes a parameter of type SaveFilterConvertOptions. The
overloaded method takes an integer parameter that limits the number of keys
created (TopN) when converting a filter to a static filter.

SaveFilterConvertOptions | Description

ToStatic Convert the filter to a static filter.

ToDynamic Convert the filter to a dynamic filter. (not implemented)

NoSave Do not save changes after the conversion. Note, however, that if the
filter is being converted to a static filter the filter keys will have been
saved.

The only supported conversion method at the moment is to convert a dynamic
filter to a static filter.

Delete Delete the filter.

This method deletes the filter from the database. If the filter is a static filter, the
related keys are also deleted.

GenerateSubquery Overloaded. Generate a subquery for this filter appropriate for use in a SQL IN
clause.

The subquery performs a DISTINCT select on the requested columnname. The
overloaded method provides an option for setting an alias for the column name.
The DBMSType property is required to identify whether the generated clause
contains a DBMS specific reserved word. If it does, the column name will be
escaped by [ and ].

Loaded Tells the SavedFilter that it was loaded from the database, rather than being
constructed programmatically. This is used by the platform. It sets up internal
values so that changes to the filter can be detected.

Open A static method that allows a filter to be loaded from the database.

The filter is loaded by the ID. The created filter is not added to the application’s
filters collection.

Save Save the filter to the database.

The database to which the filter is saved is defined by the database object
provided during initial construction of the SavedFilter

info@netquarry.com

36 NetQuarry, Inc.




400 - Coding www.netquarry.com

netQUARRY

Create a SavedFilter
There are two ways to create a saved filter. You can directly create a SavedFilter object and populate it
yourself. Take the more convenient approach to create a SavedFilter via a Mapper Exec.

Create New
This example is based on the code that handles the Mapper Exec

//--- Create filter object, passing app and database (database must have xot tables)
SavedFilter flIt = new SavedFilter( appContext, _dbData);.

//--- ldentify the key field for your SavedFilter.

IField fIdPK = Fields_Find(null, FieldrFindType.PK);

flt_Name = "FilterName";

//--- Get the collection of filters from your mapper and have it generate an appropriate description
MapperFilters flts = mapper.Filters;

string fltDesc = EAPUtLII.StripHTML(Flts.GetShortDesc(FilterDescOptions.NoPrefix | FilterDescOptions.PlainText));
flt.Description = fltDesc;

flt_ModuleKey = mapper .ModuleKey;

flt.OwnerID = _appContext.UserContext.1D;

//--- MOP is necessary if you want to load filter into application in a different session, or in scheduled task
//--- the logged in user must have permission to see the MOP for the filter to be loaded.

fIt.MOP = mapper.MOP; //--- Care should be taken. Not all mappers have a MOP specified.

flt.From = mapper.View;

flt.Attributes = filterAttrs;

if (FIPK 1= null)

flt.KeyColumn = FIdPK.Key;

else //--- Throw decent error when no PK found.
{
throw new ApplicationException("'Unable to create filter -- no primary key found™);
}
//--- This section is to identify whether you have some keys selected (meaning user has checked rows in the datasheet)

ArrayList IstKeys = mapper.SelectedKeys();

//--- if some keys found, it’s going to be a static Ffilter
ifT (Istkeys != null && IstKeys.Count > 0)
{

flt.Attributes |= FilterAttributes.Static;
flt_Attributes &= ~FilterAttributes.StaticFilter;

for (int 1i=0; ii<lstKeys.Count; ii++)

//--- add the keys
flt.Keys.Add(IstKeys[iil]);

else
//--- Include ALL filters, not just user Filters. This converts the collection of filters to a string.
flt.Filter = flts.GetFilter(GetFilterFlags.IncludeAllTypes);

¥

//--- Set the key type based on the type of the primary key field
if (EAPULII.Typelsinteger(fl1dPK.OleDbType))

flt.Attributes |= FilterAttributes.KeyNumeric;
glse ifT (FIdPK.OleDbType == OleDbType.Guid)

flt.Attributes |= FilterAttributes.KeyGuid;
glse ifT (EAPUtLI I .TypelsChar(f1dPK.OleDbType))

flt_Attributes |= FilterAttributes._KeyString;
3

//--- Save the filter to the DB.
flt.Save(_appContext);

//--- and optionally add the filter to the application’s Filters collection
_appContext.Filters.Add(fIt);

info@netquarry.com 37 NetQuarry, Inc.



400 - Coding www.netquarry.com

netQUARRY

User Mapper Exec
This example uses the Mapper Exec to create the SavedFilter for you. It’s much more convenient.
//--- so construct an appropriate name

string fltName = string.Format(“user:{0}:{1}", this.Application.UserContext.ID, DateTime.UtcNow);
SavedFilter sf = mapper.Exec(MapperExecCmds.FilterSave, 0, fltName) as SavedFilter;

//--- right now we have a new SavedFilter object (constructed similarly to the example above)
//--- The SavedFilter is attached to the application and it is saved to the database

//--- You can now override/modify the SavedFilter properties to customize the behavior
sf.OwnerlID = "a_user_id_other_than_current_user";

//--- 1T necessary, convert the dynamic filter to a static. It’s up to you

//--- 1T the Filter is already static (because keys were selected) nothing happens
sf._Convert(Application, people.Database, SaveFilterConvertOptions.ToStatic);

//--- save these changes to the database.

sf.Save(this.Application);

Get an Existing SavedFilter
There are two ways to get an existing saved filter. You can open the filter from the database, or find a
filter in the application’s Filters collection.

Open It
Basically use the static Open method on the SavedFilter object. To open a SavedFilter in this way, you
have to know the filter’s ID.

//--- you have to obtain a filter id. Here we get the value from the querystring

//--- &fFltid= is a platform supported querystring parameter. Whenever it is discovered, the platform
//--- will add the SavedFilter to the mapper on the page.

string fltld = HttpContext.Current.Request["fltid"];

if (Istring.IsNullOrEmpty(fltld))

SavedFilter flt = SavedFilter.Open(appCxt, fltid);

Find it
You can also get an existing SavedFilter by searching for it on the application’s Filters collection.

//--- you have to obtain a filter id. Here we get the value from the querystring
//--- &Fltid= is a platform supported querystring parameter. Whenever it is discovered, the platform
//--- will add the SavedFilter to the mapper on the page.
string fltld = HttpContext.Current.Request["fltid"];
iT (Istring.IsNullOrEmpty(sFltld))
SavedFilter flt = app.Filters.Find(fltld, FilterFindType.BylID);
}
You can also search for a filter by its moniker. Of course if you do search by moniker you have to ensure

that each moniker you provide to a filter is sufficiently unique.

info@netquarry.com 38 NetQuarry, Inc.



400 - Coding www.netquarry.com

netQUARRY

Registered Filters

Registered Filters are essentially an implementation of a Saved Filter. You use a Registered Filter when
you want to perform some filtering of the mapper on the target mop that cannot be achieved just by
setting the pk querystring parameter. For example you want to navigate to the list view with the results
filtered in a specific way.

In the past we allowed the filter clauses to be specified directly on the query string. For example
...&flt=order_id%3d'123ABC'%20AND%20people_id%3d'456XYZ'...
(%3d is the URL escaped value of =)

We even allowed this type of navigation parameter to be specified in meta data and to take field
references

...&flt=order_id%3d['order_id]%20AND%20people_id%3['people_id]...

Because we allowed such parameters to be read from the query string, it was possible for a person to
construct a URL in order to execute a SQL statement. Basically a SQL Injection attack. Therefore we
removed the ability to enter filter parameters directly onto the query string. However, the functionality
provided by the filter parameters was still necessary, so we devised a workaround where you can
programmatically register a filter, and refer to a key to that filter on the querystring.

The platform will only accept a key to a Registered Filter when passed with the &flt= parameter. If a
Registered Filter key is not specified, an exception is thrown.

Using Registered Filters

Using Registered Filters is very simple. You create the filter criteria, then register it using a static
method on the SavedFilter object. You are given back a key, that you set as the &flt parameter value.
Here’s an example of using &flt, before this change.

using NetQuarry.Data;
public override void FieldButtonClick(IField sender, EAPEventArgs e)

switch (sender.Key)

{
case '‘company':
// need to Encode the filter criteria so the gs handling not confused with “=" in filter clause
string navFlt = string.Format("flt={0}", EAPEncode.ForUrl(sender.BuildFilter(Q)));
// 1T you do this now, an exception will be thrown
this._Application._Navigate(''companies_vendorsldetail', null, navFlt, "nav');
break;

info@netquarry.com 39 NetQuarry, Inc.



400 - Coding www.netquarry.com

netQUARRY

Here's the same example with the filter being registered

using NetQuarry.Data;
public override void FieldButtonClick(IField sender, EAPEventArgs e)

switch (sender.Key)
{

case '‘company':
// register the filter and get the key
string Filter = SavedFilter.RegisterRegFilter(this_Application, sender._BuildFilter();
// pass the key as the value of the &Flt parameter
string navFlt = string.Format("flt={0}", EAPEncode.ForUrl(filter));
this.Application.Navigate(''companies_vendorsldetail', null, navFlt, "nav');
break;

As you can see there is very little difference in the code to perform the same task. All we've done is
converted the filter we want into a key and pass that on the query string instead of the filter clause.

There is a potential loss of functionality, however, with not being allowed to pass filter criteria directly.
There is no way to specify filter criteria in meta data. It is not possible to register a filter in meta data for
it to be used at run time. This means that meta data for navigation that relies on the &flt parameter
must be converted to navigation via code.

If you are unsure where in meta data you might have used the &flt parameter, you can use this SQL
(connected to the meta database) to determine what needs replacing.

SELECT * FROM xmt_properties WHERE prop_value like "%flt=%"

Consuming Registered Filters

For the most part, you will only ever want to register a filter and the platform will consume the
registered filter and perform the appropriate action. However, you may need to extract and use a
registered filter in your own code.

To do this you use a static method on the SavedFilter object to decode the filter key and return the
actual filter clause.

This was how it may have been done in the past.

using NetQuarry.Data;
using System._Web;

public override void MapperAfterLoad(IMapper sender, EAPEventArgs e)

{
string sFIt = HttpContext.Current.Request["fIt"];
//string skFIt = System.Web.HttpContext.Current.Request["fIt"];
//--- BugzID: 5036 - Convert use of raw flt parameters. Now decode

string sFIt = SavedFilter.ExtractFilterFromReq(sender.Application,
System.Web_HttpContext.Current.Request);
sCompanyld = sender.Database.DBLookup(‘‘company_id", *companies', sFIt) as string;

info@netquarry.com 40 NetQuarry, Inc.



400 - Coding

n etQU A R RY www.netquarry.com

And now with the registered filter

using NetQuarry.Data;
using System.Web;

public override void MapperAfterLoad(IMapper sender, EAPEventArgs e)
// 1f you don”t have a proper key on the &flt parameter, this will throw an exception

string sFIt = SavedFilter.ExtractFilterFromReq(this.Application, HttpContext.Current.Request);
sCompanyld = sender.Database.DBLookup(‘‘company_id", '‘companies™, sFIt) as string;

Register Filter Methods

RegisterReqFilter Register a filter clause for use in a URL's flt parameter. Registration

will cause a NetQuarry.SavedFilter to be created and written to the

database. The method returns a filter spec that can be included in a
URL without risk of a SQL injection attack

Full parameter list

NetQuarry.lAppContext cxt The application context

string filter The filter clause to register

FilterAttributes attrs Attributes to apply to the registered filter. The
Attributes are for Saved Filters and indicate that
Registered filters are just a type of saved filter.
There are three attributes commonly used with
Registered Filters.
Temp (all registered filters will be specified as
Temp)
NoModule (the filter is not specific to a particular
module)
Registered (the filter is a Registered Filter)
string name The name of the filter. If the filter is intended to
be applied to a list view navigation, then this
name will appear in the caption “(Filtered On ...)
If no name is provided, a default name of
“Parent” will appear in the caption.
string description The description of the filter. . If the filter is
intended to be applied to a list view navigation,
then this string will be used as the tooltip text
when hovering over the “(Filtered On ...)”
caption.
string mop The mop of the navigation target. If a mop is
provided then more often than not, it should be
the same mop you are navigating to. This means
that the filter can only be used by that one mop.
You can also not provide any mop and the
registered filter can be associated with any mop.
When no mop is specified, the NoModule
FilterAttribute will automatically be added.
DateTime ? expiration The date at which the filter is expired. Since the
registered filters are all temporary, they need to
be cleaned out of the database at some point. If
no expiration date is specified, the default is to
have the filter expire in 1 day.
string owner The owner of the filter . Setting the owner
restricts the filter to be used only by the owner
user. Use the value from cxt.UserContext.ID

info@netquarry.com 41 NetQuarry, Inc.




400 - Coding

n etQU A R RY www.netquarry.com

RegisterRegFilter

Register a filter clause for use in a URL's flt parameter. Registration

will cause a NetQuarry.SavedFilter to be created and written to the

database. The method returns a filter spec that can be included in a
URL without risk of a SQL injection attack

RegisterReqFilter (2)

The most basic overloaded method. Filters created using this
overload will always be marked as Temp with a default expiration (1
day) and will be restricted to the current user.

NetQuarry.lAppContext cxt The application context
string filter The filter clause to register

RegisterReqFilter(3)

Use when you want to create a filter quickly but want an expiration
date other than one day. Filters created using this overload will
always be marked as Temp and will be restricted to the current user.

NetQuarry.lAppContext cxt The application context
string filter The filter clause to register
DateTime ? expiration The date at which the filter is expired. Since the

registered filters are all temporary, they need to
be cleaned out of the database at some point. If
no expiration date is specified, the default is to
have the filter expire in 1 day.

RegisterReqFilter(4)

Use when you want to create a filter with a default expiration (1 day)
and restricted to current user, but you want to provide a filter name
and description to appear on the target list view.

NetQuarry.lAppContext cxt The application context
string filter The filter clause to register
string name The name of the filter. If the filter is intended to

be applied to a list view navigation, then this
name will appear in the caption “(Filtered On ...)
If no name is provided, a default name of
“Parent” will appear in the caption.

string description The description of the filter. . If the filteris
intended to be applied to a list view navigation,
then this string will be used as the tooltip text
when hovering over the “(Filtered On ...)"”
caption.

string mop The mop of the navigation target. If a mop is
provided then more often than not, it should be
the same mop you are navigating to. This means
that the filter can only be used by that one mop.
You can also not provide any mop and the
registered filter can be associated with any mop.
When no mop is specified, the NoModule
FilterAttribute will automatically be added.

RegisterReqFilterForURL

This is essentially an overload of RegisterReqFilter(4) where the
return value is pre-encoded for safe use in a URL.

ExtractFilterFromReq

Extract any general filter clause from the request. Currently this is
from the flt query parameter which exposes a SQL injection attack
risk. By accessing this parameter through this method the platform
will immediately detect the risk and provide a single point at which to
remove the risk through an improved general filtering mechanism.
The method returns a filter clause back to the caller.

info@netquarry.com

42 NetQuarry, Inc.




400 - Coding

www.netquarry.com

netQUARRY

ExtractFilterFromReq

Extract any general filter clause from the request. Currently this is
from the flt query parameter which exposes a SQL injection attack
risk. By accessing this parameter through this method the platform
will immediately detect the risk and provide a single point at which to
remove the risk through an improved general filtering mechanism.
The method returns a filter clause back to the caller.

Full parameter list

NetQuarry.lAppContext cxt The application context

HttpRequest req The HTTP Request object.

string name The name of the request parameter. Normally
the registered filter key is pass on the &flt
querystring parameter and you would typically
use one of the impler overloads (2). However, if
the register filter key is on a different querystring
parameter, you need to use this method.
out SavedFilter filter An out parameter. The SavedFilter, if any. This
may include a filter description.

ExtractFilterFromReq(2)

The most basic overloaded method. When all you need to retrieve is
the filter clause, use this method. It assumes that the registered filter

key is on the &flt parameter of the querystring.
NetQuarry.lAppContext cxt The application context
HttpRequest req The HTTP Request object.

ExtractFilterFromReq(3)

Use this overload to retrieve the associated Savedfilter object, along
with the filter clause. It assumes that the registered filter key is on
the &flt parameter of the querystring.

NetQuarry.lAppContext cxt The application context

HttpRequest req The HTTP Request object.

out SavedFilter filter An out parameter. The SavedFilter, if any. This
may include a filter description.

info@netquarry.com

43 NetQuarry, Inc.




	Training - 400 - Coding
	Training - 401 - Generated Code
	Training - 402 - Mapper Extensions
	Training - 403 - TypedMapper Objects
	Training - 404 - Page Extensions
	Training - 405 - RelatedMapperContext
	Training - 406 - Task Handlers
	Training - 407 - Creating a new extension
	Training - 408 - Saved Filters
	Training - 409 - Registered Filters



