%etQUARRY

NetQuarry, Inc.
Training

300 - Metadata Advanced

300 - Metadata Advanced www.netquarry.com
%etqu ARRY

Field References
In the NetQuarry studio, you can refer to the values of fields by means of field references.

The basic syntax for a reference is to enclose a fields key_name inside square brackets.

E.g.

[first_name]

This means get the value of the field “first_name” from the mappers current row.

There are modification characters that can be added to field references to change the format of the
returned value

$

Use DisplayText

= AnsiQuote

(back tick) = Double quote
= Use zero if null or empty
Use old value if dirty
Use label

Escape for use in URL
Escape for HTML

/

® VR AN H
1

The character modified can't be used in combination.

The most common reference modifier is the ' to AnsiQuote the returned value.

E.g.,

hello Mr Neill -> ‘hello Mr Neill’

hello Mr O’Neill -> ‘hello Mr O”Neill’

S - Would be used if the field had a picklist and you wanted to get the resolved display text for the id

'- Would be used when you want to use a field reference in a SQL statement, WHERE clause (typically in
filters)

" - Would be used mainly for displaying information to a user
? - would be used when the field value is a URL that could have characters not supported in a URL

< - would be used when the field value contains an HTML fragment that needs to be displayed with the
HTML tags, rather than as HTML.

info@netquarry.com 1 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Embedded Functions

Embedded functions are like variables that you can refer to in meta data. The idea is that at run time
the embedded function gets replaced by a string it represents. The main uses for embedded functions
are for setting default values in fields and configuring filters.

The syntax for an embedded function is
I'fnName[$] ([paraml |,param2],..)

The embedded function always begins with the characters “!fn”, followed by the name of the function in
proper case.

There is an optional modifier parameter “$” which means resolve the embedded function and
AnsiQuote the result.

Some embedded functions take parameters but that depends on the embedded function itself.
Embedded functions are created in four ways.
e Dynamically created due to meta data attribute in Session properties (and code generator)
e Programmatically created in code (typically at session startup)
e Dedicated functionality in the core to handle special case embedded function
e Dedicated functionality in custom handler for special case embedded functions
How to add an embedded function

Session Property

The easiest way to add an embedded function is to add a session property. In the studio, go to Session
Properties and add your property to the list. Choose the data type for your property. For embedded
functions they are always returned as string values so you’d want to choose a data type that can be
converted to a string in a meaningful way. For the most part, however, you want to choose the session
property as a string data type.

When adding a session property, you want to set the attributes Dynamic Only and Session Persist.
Additionally you want to set the GenEmbeddedFunc attribute.

Re-generate your generated code for session. This will create declarations for the new session property
and also the hooks for the auto creation of the embedded function.

In the Session initialization code (normally) you want to assign a value to the session property.
session.PropertywithEmbeddedFunc = some_value;

This would create an embedded function that you would refer to like

info@netquarry.com 2 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

IfnPropertwithEmbeddedFunc()

Manually in Code
If you want to add your own embedded function you can register it in the system. The ideal place for
that registration is in the Session creation code

// 1AppContext cxt

string val = "Some Value';
cxt.RegisterEmbeddedFunction(*'EmbeddedFuncName', val);
This would create an embedded function that you would refer to like

IfnEmbeddedFuncName()

Custom Handler
You can add custom handlers for embedded functions by creating a component that is derived from the
class NetQuarry.IFunctionParser

In your IFunctionParser object define values for the properties...
Name - for debugging purposes

FunctionList - Defines what embedded functions are handled/registered by this custom handler. The
function names are returned as semi-colon separated list. The names must not include a "fn" prefix.
Simple substitution resolutions can be specified in the form name=value (instead of just a name), e.g.
"X=y". Functions so specified will never result in a callback, but instead will be resolved using a simple
substitution of "y" for "!1fnX()". When the name is provided it will result in a callback into your handler.

And then implement handlers for the following methods...
Description — Given a function name you return an appropriate descriptive string.

Resolve — The main function for handling the callback. You are given the name of the function that is
being handled as well a list of parameters in the embedded function. Therefore you can create
embedded functions that take parameters.

Your component may contain code like this

public class MyEmbbeddedFunctions : NetQuarry.lFunctionParser

{

string Name { get { return ("'My Custom Embedded Functions™); } }

string FunctionList { get { return (“'CreditScore;MinPayment=15"); } } //--- register two functions. One
simple

string Description(string functionName, bool summary)

{

switch (functionName)

{

case "'CreditScore":
return (summary ? "The credit score"™ : "Return the credit score. Provide the salary and credit limit

info@netquarry.com 3 NetQuarry, Inc.

300 - Metadata Advanced

n etQU A R RY www.netquarry.com

as parameters. !fnCreditScore(salary,limit)");
break;
case "MinPayment':
return (summary ? "The minimum required payment™ : "Return the minimum required payment currently
default is 15. !'fnMinPayment()");
break;
default:
break;
3
3

string Resolve(string functionName, IDatabase db, ResolveOptions options, params object[] args)
// Resolve an expression
{
switch (functionName)
{
case "'CreditScore™:
int creditScore = 0;
//--- verify you have at least two parameters
if (args.length < 2)
throw new ArgumentException('Arguments must be the salary and the credit limit");

//. .. your code to calculate credit score given salary and credit limit

//--- Take into consideration which database to connect to and whether to encode returned value
//public enum ResolveOptions

//7{

// DbmslIndependent = 1,
// UseDataDB = 2,
// UseRepository = 4,

// Raw = 8,
// EncodeForUrl = 16, e.g., EAPEncode.ForUrl(creditScore);
//}
return (EAPUtil.ToString(creditScore));
break;
default:
break;
3
3
object Exec(int command, int flags, params object[] args)
{
//--- future functionality
¥

}

Then add your component as a FunctionParser in the studio, under components.

info@netquarry.com 4 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com
%etqu ARRY

Picklists

Picklists are used as the data sources for drop down lists and to resolve the id’s of field values into the
equivalent descriptive value the id represents.

There are five modes of picklists and three ways of defining a picklist. The following table shows a
matrix of picklist modes and methods

Definition | SQL | Standard | Enum
Mode
Simple X X
Limit To List X X X
Discriminated X X
Display Disabled X
Show Groupings X X

info@netquarry.com 5 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Picklist Definitions
There are three ways of defining a picklist in NetQuarry Studio

SQL Picklists

As the name suggests, SQL picklists are constructed from select statements. The construction of the
select statement follows the syntax described above for simple, limit to list and discriminated types. The
SQL for the picklist can be as complex as you wish, but must only select up to three columns. If your SQL
selects more than three columns, those additional columns will be ignored.

Any ordering of your picklist must be performed via the SQL statement itself using the standard ORDER
BY clause.

The SQL picklist may use any of the datasources defined in the Datasources metadata. In addition to the
list from the Datasources metadata, you can also select the Repository (the metadata database) as the
source for the picklist. You would only choose the Repository datasource in rare circumstances, or when
you may want to add functionality referring to system metadata. The most common source for SQL
picklists is the data in your operational database.

Standard Picklists
A standard picklist is a picklist in which the data for the picklist is stored in metadata and is associated
with a module like any other type of metadata.

When you create a standard picklist, the following information should be specified.

Column Description

Name The name of the picklist item. The name is used in the code generation to
provide a name for the enumeration. The caption/display value for the picklist is
auto generated from the name when you enter a value in the name column

Sort Order An integer value that denotes the order in which the picklist items are displayed.

Alternate Key Text | An alternate string value that may be used as the key of the picklist instead of the
(hidden) auto generated picklist item key.

Alternate Key Int An alternate integer value that may be used as the key of the picklist instead of
the (hidden) auto generated picklist item key.

Discrim The value of the discriminator for the pick list item. By default this is blank, but if
you specify a discrim value, the picklist isn’t configured to use it unless you set
the “HasDiscrim” property for the picklist

Attributes Attributes for the picklist item.

info@netquarry.com 6 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Enum Picklist

An enum picklist gives you the ability to create a picklist from the values of a .Net Enumeration. To set
an enum picklist, simply give the picklist a name and then specify the fully qualified (namespace and all)
name for the enumeration you want as a picklist

SQL Picklists or Standard Picklists?

When creating a picklist you are faced with the choice of creating a table in your operational database to
store the picklist information and creating a SQL picklist, or specifying the same information in metadata
as a Standard picklist.

If you prefer the SQL picklist route for operational data, you would have to create a mapper and
additional Ul in an administration section of your web application to manage the data. However, you
will have the ability to create views where you can use the picklist table to resolve the id values to
names.

Also, because you’ll have to create a mapper to manage the values of your SQL picklist, it supports the
idea that if the picklist data was cached, and you have added, modified or removed an item in the SQL
picklist, the old picklist data is automatically flushed from the cache and re-loaded with new data next
time the pick list is required. Therefore the picklist is never stale.

If you prefer the standard picklist, you don’t have to create any mappers and pages in the web ui for
managing the data. The Studio provides the management tool

The standard picklists are also included in the Code Generator. The picklists are converted to
enumerations in the Picklists.cs generated file. Therefore you can refer to the picklist in your code in a
type safe way and set the values of fields that use standard picklists using the generated typesafe
enumerations.

For standard picklists, there is no way to automatically refresh the application cache if the standard
picklists are modified in the studio.

info@netquarry.com 7 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com
%etqu ARRY

Picklist Attributes
The following table describes the attributes that can be selected for a picklist. Some attributes are only
appropriate for certain types of picklist.

Attribute sQL | Standard | Enum
AllowUserAdd v
AllowUserDelete v
AllowUserUpdate v

Cache v v
Disabled v v v
GroupByFirstChar v v
GroupByTextPrefix v v
HasDiscrim v
HideUnknownltems v v
IgnoreWhitespace v v
KeySameAsText v
LimitTolList v v
MarkUnknownltems v v
NoNullEntry v
SortByKey v
SortByText v
SortDesc v
StoreAltint v
StoreAltText v
StoreltemName v

info@netquarry.com 8 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com
%etqu ARRY

Picklist Modes
As indicated earlier, there are five modes of picklist. Not all picklist definitions support all the picklist
modes.

Simple
A simple picklist consists of a single column of data. The value stored in the database is the same as the
value displayed to the user.

sQL SELECT name FROM view WHERE display=1 ORDER BY name

Standard Set the KeySameAsText attribute if the picklist is only text

For numeric picklist you would have the text identical to the number of the Alternate Key
Int field and mark the picklist attribute to StoreAltint.

For numeric picklists of contiguous numbers, the best approach is to set the Min/Max
field property on a Combo cell type, and set the NumericDropdown CellTypeAttribute on
the field.

For a standard picklist to operate in the this mode

Limit to List

A limit to list picklist consists of two columns selected from a table or view. The first column selected
always acts as the key and is the value stored in the database. The second column selected is always the
display value. The value displayed to the user and the value selected by the user. This is the most
common type of picklist

sQL SELECT id, name FROM view WHERE display=1 ORDER BY name

Standard Set the LimitTolList picklist attribute.

You have to decide which field is acting as the key value and set the appropriate picklist
attribute.

No attribute (the internal guid associated with the picklist item)

KeySameAsText (the text value is the key — same as simple picklist)

StoreAltiInt (integer key)

StoreAltText (none guid string key)

StoreltemName (none guid string key)

info@netquarry.com 9 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com
%etqu ARRY

Discriminated

A discriminated picklist is like a limit to list picklist, but three columns are selected. Column one is still
the key, column two is still the display value, and column three is a discriminator column. The
discriminator column allows the picklist to be filtered in memory, based on the value of the
discriminated column.

Let’s say the discriminated picklist contains the following data

id name company_id
1 Fran Acme

2 lan Acme

3 Nathan Acme

4 Cam NetQuarry

5 John NetQuarry

6 Ryan NetQuarry

When the picklist is displayed to the user, it expects some value to be passed to the picklist on which to
discriminate. If there is no discriminator value (Discrim), the picklist will actually be empty. The picklist
will not display all the records.

If the Discrim value is Acme, the picklist will only display the options for Fran, lan, Nathan.

sQL SELECT id, name, discrim_value FROM view WHERE display=1 ORDER BY name

Standard Set the LimitTolist picklist attribute.

You have to decide which field is acting as the key value and set the appropriate picklist
attribute.

No attribute (the internal guid associated with the picklist item)

KeySameAsText (the text value is the key — same as simple picklist)

StoreAltint (integer key)

StoreAltText (none guid string key)

StoreltemName (none guid string key)

info@netquarry.com 10 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com
%etqu ARRY

Showing Disabled Items

For example, one scenario is that you have a set of items in a picklist but some of them are disabled and
you don’t want users to use those picklist items. However, you still would like to be able to see the
original value of the item in the picklist. Normally for picklists, if an item is excluded from the picklist,
either the picklist shows a blank value or it shows the value for the key.

To set up a picklist (SQL only) where an item may be displayed even if disabled, yet cannot be selected is
to select 4 columns in the picklist definition.

The first three columns are the key, display and discrim. The fourth column is a Boolean field that
denotes whether the picklist item should be selectable. If the value associated with an item is true, then
the item can be selected from the list.

sqQL SELECT id, name, discrim_value, display FROM view ORDER BY name

Note this example where display field is no longer part of where clause. We want the
picklist to be able to display/resolve hidden items, but not be selectable

Example where want display feature, but not discrim

SELECT id, name, NULL, display FROM view ORDER BY name

Standard Not possible

Grouping Items

You can specify a SQL picklist to be grouped by the first character or a set of characters (the grouping is
on characters in display text enclosed by []). This grouping occurs by default if the either of the GroupBy
attributes is specified for the picklist.

When using a SQL picklist you can specify a fifth column to select in the SQL statement. This column will
act as the field on which grouping is performed and not the display text field.

sQL SELECT id, name, discrim_value, display, group_value FROM view ORDER BY name
Example where want group feature and disabled feature, but not discrim

SELECT id, name, NULL, display, group_value FROM view ORDER BY name
Grouping for SQL picklists automatically groups on the group value.

An alternative to providing a dedicated group column would be to perform the grouping
on the second column and use the GroupBy... picklist attributes

SELECT id, name, discrim_value FROM view ORDER BY name
And set one of the picklist attributes GroupByFirstChar, GroupByTextPrefix depending on
the grouping requirements.

Standard Set the GroupByFirstChar picklist attribute and the picklist will have a single letter
grouping.

Set the GroupByTextPrefix picklist attribute and the picklist will be grouped by any of the
characters between the [] in the display text. Note that all the text inside the brackets
will not appear in the select list, just the grouping.

info@netquarry.com 11 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Late Bound Picklists

Although picklists are useful in that they provide ways to resolve key values to display text, they do have
the downside in that they can take a long time to load if the number of items is large. This problem can
be reduced if the picklist is cached. The large list is only ever loaded into memory once and subsequent
requests, are filled from the cache. The performance benefit now gained is now potentially lost by a
huge increase in the amount of memory required to store large picklists.

If you take a discriminated picklist of say 5,000 rows that has three rows, of about 100 bytes per row.
That makes the picklist use up 500kB of memory. The picklist itself has some overhead so the size of the
picklist in memory is effectively doubled, to 1MB. If there are 250 sessions currently in use, each with a
copy of this picklist, then that means there is 250MB of memory being consumed by one cached picklist.

There have been a number core modifications to solve the memory usage problem that are not directly
configurable to the developer, other than to turn on the special low memory usage mode. However,
Late Bound picklists is one area where a developer has more control.

A late bound picklist is a picklist where only the items required to be displayed by the picklist are loaded
into memory and cached. Typically these picklists are discriminated type picklist where we only select
enough items to satisfy any criteria. A stricter type of late bound picklist can be used where items are
added to the picklist one item at time, when needed.

Latebound Picklist using Discrim Filter
To set up a Latebound Picklist using a discrim filter, you set up the picklist like any other discriminated
picklist, by specifying the SQL with three columns. For example...

SELECT building_id, building, company FROM companies_buildings WHERE display=1

To make this picklist latebound, you specify a second (but similar SQL) statement in the LateBoundSQL
property, as follows

SELECT building_id, building, company FROM companies_buildings WHERE display=1 AND company_id={{DISCRIM}}

When the Picklist is first populated, the base SQL statement is used to define the internal structure of
the picklist object (how many columns, etc) but the base SQL is modified by adding a TOP 0 clause which
means no records are returned, except for the columns themselves.

Later, when the picklist needs to resolve a value, or display the picklist values, the discrim value is taken
from the mapper (from the Discrim) property and the latebound SQL is executed to display only what is
needed.

Latebound Picklist using Key Filter
To set up a Latebound Picklist using a key filter, you set up the picklist like any other discriminated
picklist, by specifying the SQL with three columns. For example...

SELECT people_id, display_name FROM people

info@netquarry.com 12 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

To make this picklist latebound, you specify a second (but similar SQL) statement in the LateBoundSQL
property, as follows

SELECT people_id, display_name FROM people WHERE people_id={{KEY}}

When the Picklist is first populated, the base SQL statement is used to define the internal structure of
the picklist object (how many columns, etc) but the base SQL is modified by adding a TOP 0 clause which
means no records are returned, except for the columns themselves.

Later, when the picklist needs to resolve a value, the underlying key value is taken from the mapper and
a lookup for that item is made and cached. With a key filter based picklist, you cannot use it for a
picklist that is required to be used for selections. Only for resolving id’s to display values.

info@netquarry.com 13 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Templates
Templates can be specified in what we call high and low resolution formats. A given template can have one
form of each type that are defined by template properties

The high resolution template can be specified as a fragment of HTML text in the Source property of a
template

The high resolution source may also be specified as an htm file in the FileName property which is defined as
the relative path (relative to the web root) to the htm file itself.

The Source property is used if the FileName property is not defined, or if the htm file pointed to by the
FileName property cannot be found.

The low resolution template is used for sending SMS messages to users and is specified by the SourceLow
property. These are simple formatted text strings (not html)

Templates are used for the following purposes

e Email Notification
e Invoicing Templates (through conversion to PDF)
e Hover Summaries
e MiniDetail layouts

Here is a simple example of how we use a template to transform a mapper record into a VCard file for
importing into Outlook Contacts (this example is extracted from core functionality)

The template is called “VCARD”

The Source property is defined as a text string in this format...

BEGIN:VCARD

VERSION:2.1
N:{{last_name}};{{first_name}}
FN:{{file_as_name}}

ADR;WORK;POSTAL: ; ; {{address}};{{city}};{{state}}; {{postal_code}};{{country}}
TEL ; WORK : {{phone_number}}

TEL ; FAX:{{fax_number}}
TEL;CELL;MSG:{{cell_number}}
EMAIL;PREF; INTERNET: {{email_address}}
TITLE:{{Job_title}}
ORG:{{dealership_nm}}

URL;WORK: [[detail_url]]
UID:{{dealer_id}}

END:VCARD

The locations where we want our data to be inserted are enclosed in double braces e.g.
{{dealership_name}}, or square brackets e.g [[detail_url]]. The name of the field in the double braces
corresponds to a name of a name/value pair from a NameValueCollection object.

info@netquarry.com 14 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

A field name in braces {{ }} will have its value escaped for html (effectively using the
System.Web.HttpUtility.HtmlEncode method) (This behavior can be overridden entirely in the Replace
method by setting the NoHtmIEscape TemplateReplaceFlag)

If you do not want the HTML escape to occur for a specific field, then you would enclose the field in square
brackets [[1], in this example, [[detail_url]].

The names are typically the same as the mapper fields because we have a way of generating the collection
automatically from the current mapper row. As long as there is a name/value pair in the collection that
matches a name in the template, it will be replaced.

Handling a command that sends resolved template back to user
The basic steps are to get the template object, get a collection of Name/Value pairs and then do the
replacement...

using System.Collections.Specialized;
using NetQuarry;

Template templ = Application.Templates[''VCARD"];

NameValueCollection nv = mapper.Exec(MapperExecCmds.KeyDisplayCollectionGet, 0) as

NameValueCol lection;

//--- nv now contains a collection of name value pairs corresponding to the field values in the
current row of the mapper. On this collection you may add more pairs of data if you want
nv["detail_url™] = "http://www.acme.com"

To perform the replacement operation, call the Replace Method on the template object.

string vcard = templ.Replace(nv, ContentResolution.High)

There are various options in the Replace method that indicates which template to use and what behaviour
to follow when performing the replace. The help file will go into more detail about when you should use
these options.

In this case, we stream the VCard template back to the user so they can add to their Outlook.

This is how we do it in case you might need to do something similar...

using System.Web;

HttpContext cxt = HttpContext.Current;
HttpResponse rsp = cxt.Response;

rsp.ClearContent();
rsp.ClearHeaders();
rsp.ContentType = app-Properties.GetStringValue(""MimeType", "text/x-vcard™);

//--- Note: content-length needs to be the byte count, not the char count so
//--- get the byte count per the content encoding (e.g. UTF8)

rsp.AppendHeader (‘'‘content-length”, rsp.ContentEncoding.GetByteCount(vcard).ToString());
rsp.AppendHeader (*'‘content-disposition’, "attachment; filename=vcard.vcf");
rsp.-Write(vcard);

rsp.-EndQ);

info@netquarry.com 15 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Handling a command that sends an email

Sending email is very similar. You define the template layout either as HTML, or plain text and inside the
template specify the replacement tokens. As | said, the names you use can match the mapper fields because
of the exec we use to generate the NameValueCollection object.

You decide whether you want the template to be defined inside the Source property, or as an htm file in the
FileName property.
using System.Collections.Specialized;

using NetQuarry;
using NetQuarry.Services;

Servicelnfos svs = this.Application.Services;
IEmailService mail = (1EmailService)svs.GetServicelnstance("'SmtpMail™);

Template templ = Application.Templates["'Email Notification'];

NameValueCollection nv = mapper.Exec(MapperExecCmds.KeyDisplayCollectionGet, 0) as NameValueCollection;
string body = templ.Replace(nv, ContentResolution.High);

string subject = "Email Alert";

bool isHTML = true; // set your flag whether you’re sending html email or not

string sendTo = GetSendToEmailAddressList();// your function here to get list of email addresses
if (Istring.IsNullOrEmpty(sendTo))

mail.Send(string.Empty, sendTo, subject, body, isHTML);
3

In the mail.Send method, the first parameter is the senders address. If you leave it blank (like this example),
the email will be sent from the email address defined by the DefaultSenderAddress property of the
SmtpMail service.

info@netquarry.com 16 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Full example for VCard

using System.Web;

using System.Collections;
using NetQuarry;

using NetQuarry.Data;

public override void MapperCommand(IMapper sender, EAPCommandEventArgs e)

{

if (e.CommandName == "exportVCard™)

{
ArrayList IstKeys = null;
using (IMapper clone = new Mapper())

IstKeys = sender.Exec(MapperExecCmds.SelectedKeys, 0) as ArraylList;

//--- clone without adding flavors so far
//--- this is another way to not use the same mapper passed to the handler
sender.Clone(clone, 0);

string vCards = ConstructVCard(clone, IstKeys).ToString(Q);

HttpContext cxt = HttpContext.Current;
HttpResponse rsp = cxt.Response;

rsp.ClearContent();
rsp.ClearHeaders();
rsp.ContentType = Properties.GetStringvValue(""MimeType", "text/x-vcard™);

//--- Note: content-length needs to be the byte count, not the char count so
//--- get the byte count per the content encoding (e.g- UTF8). [10/3/06 CW]

rsp.AppendHeader ("'content-length™, rsp.ContentEncoding.GetByteCount(vCards).ToString());
rsp.AppendHeader (“'content-disposition™, "attachment; filename=vcard.vcf);

rsp.Write(vCards);

rsp.EndQ);

//--- remember to close any mapper we open
clone.Close();

info@netquarry.com 17 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

private StringBuilder ConstructVCard(IMapper mapper, ArrayList IstKeys)

{

StringBuilder sb = new StringBuilder();

//--- read from the extension properties which template to use for this command
//--- the template is tied to the mapper

string templName = Properties.GetStringValue("Template™);

if (string.IsNullOrEmpty(templName))
throw new ArgumentNullException(**'VCard Template', "No VCard Template associated with the mapper™);

Template vcardTempl = Application.Templates[templIName];

if (vcardTempl == null)
throw new ArgumentNullException(*'VCard Template', "No VCard Template associated with the mapper');

it (mapper.HasRecords)

{
//--- lterate through the rows...
mapper .MoveFirst();

do
{

//--- ITf we have a set of selected records and this record isn"t one of them
//--- then skip this record.

if (Istkeys != null && IstKeys.Count > 0)

iT (!IstKeys.Contains(mapper.RowKey)) continue;

}

//--- resolve the values into the template
NameValueCol lection nv = mapper.Exec(MapperExecCmds.KeyDisplayCollectionGet, 0) as NameValueCollection;

NameValueCollection nvLink = new NameValueCollection(4);
nvLink.Add("'req”, "nav');
nvLink.Add('mop", mapper.MOP);

nvLink.Add('fIt", EAPEncode.ForUrl(SavedFilter.ReqisterReqFilter(mapper.Application, mapper.RowKeyFilter(mapper.RowKey))));
nv["detail_url™] = EAPUtil.ConstructExternalLink(Application, nvLink);

//--- add the vcard record to the string builder
sb.AppendLine(vcardTempl .Replace(nv, ContentResolution.High, TemplateReplaceFlags.NoHtmlEscape));

} while (mapper.MoveNext());
¥

return (sb.ToString());
b

info@netquarry.com 18 NetQuarry, Inc.

300 - Metadata Advanced

n etQU A R RY www.netquarry.com

Named Filters

Filtering is an important part of any application. And, because filters are able to be applied to many
different objects, it is necessary that some filters should be defined once and then re-used in many
places.

This is the basic idea behind named filters.

Named filters are defined in the Studio as follows

Property Description

Module The module to associate the named filter to.

Filter Name The name of the filter. This is the name you will refer to when referencing in
metadata or code.

Moniker A helpful description of the filter.

Filter Sql The actual filter clause of the filter. The filter can contain references to other
named filters and embedded functions.

Priority The priority of the filter definition. The filters are loaded into a NamedFilter

collection on the application and it is possible to define more than one filter with
the same name. The filters can be permissioned by role and if a user has more than
one role and therefore has more than one named filter of the same name, the filter
with the highest priority will be used. Priority of 1 is higher than 2.

Attributes You can disable the named filter if it’s no longer used.

Permissions Allows you to enable named filters based on role. This gives you the possibility of
defining a named filter per role, but with the same name. Where such a filter is
used means it can return different data to the user depending on the user’s role.

Referring to Named Filters

Only mappers can directly reference named filters. On the Filter subform of a mapper, you can add a
filter (give a name) and then select one of the named filters from the list. If there is a mapper filter with
both a regular SQL filter and a named filter, the named filter wins.

Elsewhere you can reference named filters using the embedded function syntax...
IfnNamedFilter(<filter_name>)

It is possible to refer to a named filter in another named filter, since named filters support the use of
embedded functions.

info@netquarry.com 19 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com
%etqu ARRY

Flavors

Flavors are normally used to modify the behavior of the Ul. Either show or hide a field or lock it
depending on where the mapper is currently being displayed and whether any customizations have
been applied. Whenever a mapper is displayed on a page, that page assigns a flavor to the mapper.
The flavor of the fields in the mapper are tested against the mapper’s flavor (bit tested) to see if there is
anything special needed to be done.

There are four types of flavor
e Include flavor
e Exclude flavor
e Hide flavor
e Lock flavor

Include Flavor

If the flavor of the field matches the flavor of the mapper, the field is included in the mapper’s field
collection. If a field has an include flavor and the flavor of the mapper is zero, the field will not be in the
mapper’s field collection.

Exclude Flavor

If the flavor of the field matches the flavor of the mapper, the field is excluded from the mapper’s field
collection otherwise it is included in the mapper’s field collection. If a field has an exclude flavor and the
flavor of the mapper is zero, the field will be in the mapper’s field collection.

Hide Flavor
If the hide flavor of the field matches the flavor of the mapper, the field is included in the mapper’s field
collection but it is hidden from display.

Lock Flavor
If the lock flavor of the field matches the flavor of the mapper, the field is included in the mapper’s field
collection but it is visible, but locked from being edited.

Flavors can be applied to a mapper from the following places
e Core code —e.g., List view, Detail view, Wizard, Save, Find, etc
e Pages
e Page elements in wizards

e Page elements in consoles

info@netquarry.com 20 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

e Subforms
e Menu targets

For majority of situations, you can get by with flavoring by what’s added by the core. For situations
where you would like to add your own flavoring, there are eight custom flavors you can manipulate and
add to your own objects to change behavior.

Mutual Exclusion

It’s vitally important for flavors (especially include/exclude flavors) that you take into account every
possibil combination of flavor. An example of using flavors is to have the same field display slightly
differently depending whether the record is new, or existing.

An example is a field that selects a document to attach to a record for a new record, but is then not
linkable for the existing record. The mapper field might look like this

KeyName Cell Type Include Flavor Exclude Flavor
document_name FilePath New 0
document_name TextBox 0 New

The fields are configured by flavors to be mutually exclusive. On a new record, the flavor “New” is
applied to the mapper. Therefore the FilePath field will be included and the textbox field would be
excluded. In contrast on an existing row, the New flavor is not set. Because the flavor is not new, the
FilePath field is excluded and the TextBox field is now included.

If you get the flavoring wrong and for some combination of flavors both fields are on the mapper then
both fields are automatically excluded. It’s impossible to decide which of the two fields to show. In this
instance there will be a devlog entry indicating there are two fields with the same key name and are
being excluded. Of course you can quickly tell there’s a problem as the field you want to see is not
there, or there’s an error in the code that access that field.

Flavor Editor

In the studio, if you right click on a mapper row, the last option is to open the flavor editor. This editor
allows you test out your flavor scheme on the fields in the mapper. You can apply various flavors and
see what the effects of those flavors are on the mapper’s fields collection.

The editor also allows you to add and remove flavors from many fields at once.

If you are starting with flavors and are still unsure about flavoring in general, you should use the flavor
editor to check what you are doing. In any case, if you are changing the flavor of many fields at once,
then the Flavor Editor is the recommended approach.

info@netquarry.com 21 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

vl ke [e Lok
[] Cumtomd | Contond 1] 5. | Castomdl Pt
f] (] St |Fort o Pt
2 Pt "] (]

w Cumomd Sdedaisd Custont P
= [S Latnd [Py
» [0 [)
=] o Cuntond P
] (] Lo SurduDotnd | Costentl Pt
= [Latem Custersd Pt
= Lufvim 8 Custend Pt
L] 0 ® Custond)
] (] (- Cuomt Pt
] (] Lt | S S Doind | Custendl Pt
m Lofuee| b |3 Dumtusl Pt
ne (] [T pr——— Cusont P
] Lat s Conterd P
w Lntien [S1da ‘Suthomm | Suardedeind 1T ot o

PeT——— e
Cobumn Wit [
—=

To add or remove any combination of fields, you must first select one or more rows using shift or ctrl
and click like a regular multi-select list box. Once selected the 8 flavor editor buttons become enabled.

Cumtomt

¥ Lt =
i [10] Latiem | bt Sttt |Gl Pt
ool i p—— i Lo G [Pt
ttom e " o] [Coniont ot
b . e "] Lt Contemt Fan
] B ki ol 2 O e 1] Lafdis Starda S | Surdeotd I Pt -
Flaues e ~ =
T — YTyTm————T— reT—— —
Corione, Lavaws, Frd.Sutiom. Coe ity r |-
Sl P, Sadvd [Asticite | [addfmhae | [sk | [addie |
e Ty k| Eian_| [Tomem i Pt i
e [| [Femee][] e | [J

Click on one of the buttons to pop up the Flavor widget

M| Flavor ‘

=

Hributes:

Custom1
Custom2
Custom3
Customd
Custom5
Customb
Custom?
Custom8
Existing

3

o
s
=

FindCriteria
Import
ListSave
Listiew
MiniDetail
MiniList

I e o o

v

Select one or more flavors and click OK to apply or remove the flavors.

ke [Lok

] Cumtomd | Cantorsd] 5. Firel Pl | Cantond P
] (] St |Fort] Pt
2 Pt "] (]
w Cumomd Sdedaisd Custont P
= [S Latnd [Py
] (] ® Custensd)
=] o i1 i | ot P
] (] Lo S Dotnd | Costentl Pt
] o Latem Fire s | Cistemet Pt
= Lufvim 8 FindiFibes | Customl Pt
L] 0 ® Frat{Fibs | ol)
] (] (- Cumtomt Pt
] (] Lt | S S Doind | Custendl Pt
m Lntn| S Dumtusl Pt
ne (] [T pr——— Cusont P
] Lat s Conterd P
w Lats Bimeds_ [0 Suthom | StrawDind I Pord -

PeT——— e
Cobmn Wit 0
=)

info@netquarry.com

22

NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Custom Flavors
The NetQuarry platform supports 8 custom flavors. Custom flavors are provided for use by application
developers to modify behavior of mappers and essentially change the layout of pages.

Like any flavoring, custom flavors are consumed at the mapper level. Meaning you will define which
fields respond to certain flavor attributes. Also the flavors can be consumed in code to modify business
rules and/or layouts, programmatically.

Custom flavors are generally applied at the page level, or from a navigation target. The navigation
target can be a subform target, menu target, or navbar target.

There is no restriction as to the meaning of any of the 8 custom flavors. In fact each of the 8 flavors will
probably have a different meaning to each mapper on which custom flavoring used.

To improve discoverability of custom flavors, we have provided the ability to name each of the 8 custom
flavors on a per mapper basis. The custom flavor name is then displayed to the developer when a page
(or page element) is set to use that particular mapper. Additionally you can see the name of the custom
flavor on the F8 debug info.

Mty - | Mapgers - (116 lwsl]
o fe R e Dek e e -8
e e [Ptsten, | Qrvw et 81 Gurom 3 dpvkonan. e B G soars B3 Copurens + i Eue [o st +

At page level
W B e Dk e -8 x

| e b e e e [Dhetet Qlime peim @0e 0w D iesonos Botis Bhiss o [Commens - @ tum [tiwrer B imnn -
3 . Pagas - (16 Rows)

FEFEFFTERRPFRF TR RRiing]

s Cirmed ok g et b bt

info@netquarry.com 23 NetQuarry, Inc.

300 - Metadata Advanced

n etQU A R RY www.netquarry.com

Using Wizards

When you create a wizard you must bring to bear all parts of the platform in one location. Concepts
such as flavors, field references, navigation parameters, page layout and mappers are heavily used in
creating wizards. In addition to these core features, there are some additional concepts that only apply
to wizards.

Instances (Page Element)

On a wizard, an instance is like a category. It allows you to group together one or more pages of the
wizard so that the values presented on each page are associated with the same physical instance of a
mapper object. The best way to describe how instances work is to provide some examples.

You want a wizard that records a users name, address, phone information. The name and phone
information are in a person mapper, the address in a separate address mapper. The wizard requires
that you have three pages in the order of, name, then address, then phone info.

Pagel — name uses the person mapper
Page2 — address uses the address mapper
Page3 — phone uses the person mapper

Now, we want Pagel and Page3 to refer to the same person mapper because the name and phone info
belong to the same person. Therefore when we save the information on the wizard, the name and
phone information are saved on the same person record. Therefore we have to specify that Pagel and
Page3 use the same instance of the person mapper.

Pagel — name, (mapper — person), (instance — name_phone)
Page2 — address, (mapper — address), (instance — address_only)
Page3 — phone, (mapper — person), (instance — name_phone)

The names of the instances are arbitrary but should be meaningful for their purpose so that other
developers can understand the functionality of the wizard.

At the end of the wizard there will be two inserts. One on the person mapper, one on address mapper.
If you had not specified the same instance for page one and three, for example...

Pagel — name, (mapper — person), (instance — name)

Page2 — address, (mapper — address), (instance — address_only)

Page3 — phone, (mapper — person), (instance —phone)

info@netquarry.com 24 NetQuarry, Inc.

300 - Metadata Advanced

n etQU A R RY www.netquarry.com

There would be three inserts at the end of the wizard. One insert on the name instance of a person
mapper, containing just the name information . A second insert for address on the address mapper. A
third insert on the phone instance of a person mapper with just phone information. The records from
the inserts of each instance of person mapper would not be related to each other.

It is important to remember that instances of the same name do not have to be on consecutive pages.

Primary Instance

There is a special type of instance used in wizards, called the primary instance. The primary instance of
a wizard generally is the instance associated with the first page of the wizard. The primary instance of
the wizard can be thought of as the instance that performs the main purpose of the wizard. Also, when
navigating from the wizard, it is the rowkey of the primary instance that is used by default as a
navigation parameter.

You can override which instance is the primary instance by setting the Primarylnstance property at the
page level.

Types of Page Elements
There are three main types of page element you would use in a wizard. Detail, List and Summary. These
are specified by which component is used to render that information.

e WizPhantomDetail — Detail page

e WizPhantomEditList — List page (editable)
e WizPhantomList — List page (uneditable)
e MapperSummary — Summary info

The WizPhantomList page type is probably used the least as it does not provide the ability to edit data
and would only be used to display a list of information. And if there is a read only summary, then a
MapperSummary page might be used instead.

info@netquarry.com 25 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

WizardPhantomDetail Pages

The most common requirement for wizard page is to use a detail layout to provide the appropriate data
entry. To use a detail page, you would create a new page element using the WizPhantomDetail
component. When using detail pages on a wizard, you would typically use the following properties.

Property Description

FieldList On detail layouts of wizard pages, you can specify which fields should be
displayed on that page without resorting to complex flavoring. The fields you
want to show on a page, you specify in a semi colon delimited list in the FieldList
property of the page element. If you don’t specify any fields, you get all the fields
in the mapper.

Grouplist If your mapper has some groups defined, you may select the fields in that group
by the group name. Multiple groups are specified in a semi colon delimited list of
group names.

LockFieldList If you want to display some fields that are normally editable, but need to be
locked for some reason (again without resorting to flavors) then you can provide
a semi colon delimited list of fields that should be locked.

InstanceName The name of the mapper instance for this page

CopyValues The CopyValues property of a WizPhantomDetail page element provides a way in
metadata to set values in your pages from data in the query string, from other
instances in your wizard, or set literal values. The copy values property is
specified as a semi colon delimited list of field values to copy, in the form <dst-
instance>.<field-key>=<src-instance>.<field-key>. The copy values parameters
will almost always require the use of field references.

If your wizard has multiple instances, then you would normally specify the copy
values property on the first page of each instance.

To provide an example, we’ll take the wizard example earlier of the creating a
new person, address, phone data. In the navigation to this wizard, we added a
custom query string parameter “company_id=some_guid” so we can relate the
new person to an existing company.

Copy From How

Incoming On the first page element, the CopyValue parameter would be specified as

query string company_id=[req.company_id]

parameters note: we don’t have to provide the name of the current instance as dest-
instance. By default it’s the value in the current instance we’re setting.

Another In the second page of the wizard, we’re adding a new address record, but we

wizard page have to relate the address to a person and also we have to relate the address to

instance a company. We are creating a new person record on the name_phone instance

which will have a newly generated people_id and also have the company_id
available from the request, or the mapper of the anme_phone instance.
So there are two ways to set the people_id and company_id field on the address

mapper
people_id=[name_phone.people_id];company_id=[req.company_id]

or

people_id=[name_phone.people_id];company_ id=[name_phone.company_id]

Literal value The copying of a literal value into an instance is rarely used as the data you want
to pass around and set is usually dynamic in nature. When you may want to set
a literal value is if your wizard simply needs to set a status_id value and all you

want to show is a summary page of information to confirm what the user wants

to do.
status_id=4

info@netquarry.com 26 NetQuarry, Inc.

300 - Metadata Advanced

%etQU ARRY www.netquarry.com

Property Description

WizardPageAttributes | You would use this property to specify certain behaviors on this page. The
majority of the attributes for this property refer to the visibility of the default
summary information. A full explanation of summaries and summary options are
given below.

Mapper The name of the mapper for this page element. If no mapper is specified at the
page element level, the page will use the mapper associated with the page.

Caption A caption to display on the wizard in the top right hand corner of the wizard page

describing the purpose of that step to the user.

info@netquarry.com

27 NetQuarry, Inc.

300 - Metadata Advanced

WizardPhantomEditList Pages
If you wanted to use an editable list as a wizard page, then you would create a new page element using
the WizPhantomEditList component.

netQUARRY

www.netquarry.com

Property

Description

InstanceName

The name of the mapper instance for this page

WizardListOptions

You use these options to specify whether the editable list requires the following

features.
Attribute Description
AllowAddNew The editable list supports addition of new rows via a popup dialog

window. When this attribute is set, you need to additionally specify the
NewTarget page element property.

AllowAddViaFind

The editable list supports addition of new rows via a popup multifind
dialog. When this attribute is set, you need to additionally specify the
FindFilter, ParentMapper and ViewKey properties.

AllowRemoveltems

Allow items to be deleted from the editable list. Items which already
exist in the list when the page is opened, or items added to the list once
the page is opened can be deleted from the list.

NoRefresh

If items can be added to the list, then a refresh button is automatically
added to the page. You can hide the refresh button if not necessary.

ShowlLinksAsButtons

When items can be added and we have links New..., New From Find... or
Refresh, by default these are rendered as links. You set this attribute and
you can have these links rendered as buttons.

WizardPageAttributes

You would use this property to specify certain behaviors on this page. The
majority of the attributes for this property refer to the visibility of the default
summary information. A full explanation of summaries and summary options are

given below.

WizardPageSelectors

The editable list page supports special functionality around the row selectors.

Attribute

Description

InitiallySelected

The selector checkboxes are initially checked when the page is opened.

ProvideSelectors

Record selector checkboxes are added to each data row. This attribute
must be specified for all other attributes to take effect.

RequireSelection

When the next button is clicked, you can specify that at least one of the
rows must be selected.

SaveSelectedOnly

When the next button is clicked, typically an update event is fired on each
row of the mapper, regardless of selection. However, if you only want to
have update events fired for selected rows, then you would set this
attribute. You would normally use this property when your editable list is
displayed only on one page.

ShowsSelectedOnly

The typical usage scenario for editable lists with selector is to have the
editable list display on one page to allow a user to select one or more
rows. Then, clicking next, the next page displays the same editable list,
but filtered down to the selected rows from the previous page. If you
want this behavior, then this attribute will be set on the editable list of
the next page, not the previous page.

Mapper The name of the mapper for this page element. If no mapper is specified at the
page element level, the page will use the mapper associated with the page.

Caption A caption to display on the wizard in the top right hand corner of the wizard page
describing the purpose of that step to the user.

Filter This is where you specify the filter criteria for the editable list values. The filter

criteria will probably contain references to either other page instance values, or
values from the initial navigation.

info@netquarry.com

28 NetQuarry, Inc.

300 - Metadata Advanced

www.netquarry.com

netQUARRY

Property

Description

SummaryFilter

This filter applies to the summary of this editable list. Here you can provide a
different filter for the summary information than used for the editable
information. Typically your summary filter will be identical to the filter with
perhaps one or two additional criteria. If no summary filter property is provided
the Filter property is used for the summary filter.

SummaryMapper

You can specify an alternative mapper to use to generate the summary data for a
editable list page. The SummaryFilter will apply to the SummaryMapper if a
SummaryMapper is specified.

FindFilter

Used when you want to support the multi-add user interface to add new records
to the list. The filter is applied to the search results of the multi-add .

ParentMapper

Required when the page supports addition of records via the new dialog, or the
multi-add interface. The parent mapper is the parent to the editable list mapper.

ViewKey

Required when the page supports addition of records via the new dialog, or the
mult-add interface. The foreign key is a field on the mapper to which the records
are added (the editable list mapper).

NewTarget

Required when the page is set up to add new rows to the list. The targetis a
MOP that can add records to the same mapper as the list. The new page is
opened as a popup in the popup dialog mode which provides the “Save and New”
button.

NewTargetRowKey

This property is used for adding new rows to the list, either through new dialog,
or multi-add interface. It is optional to set this property. If it is not set, the
primary key of the primary instance is passed as the parent row key to the new
popup dialog. This ensures that the newly saved record is related to the record
associated with the mapper. If the primary instance is an existing record, the
primary key on the wizard will be specified and this property is not necessary. If
the primary instance mapper is a new record, the default RowKey parameter
passed in the navigation to the new popup detail is blank. You can specify a fixed
value, or a reference to an instance value (most likely property value for this

property).

info@netquarry.com

29 NetQuarry, Inc.

300 - Metadata Advanced

www.netquarry.com

netQUARRY

WizardPhantomList Pages
If you wanted to use a static list as a wizard page, then you would create a new page element using the

WizPhantomList component. You can just use this type of page to present the list with a way to choose

one or more rows of the list when page selectors are in use. Without page selectors, the use of this type

of page is somewhat limited.

Property Description
InstanceName The name of the mapper instance for this page
WizardPageAttributes | You would use this property to specify certain behaviors on this page. The

majority of the attributes for this property refer to the visibility of the default
summary information. A full explanation of summaries and summary options are
given below.

WizardPageSelectors

The editable list page supports special functionality around the row selectors.

Attribute Description

InitiallySelected The selector checkboxes are initially checked when the page is opened.

ProvideSelectors Record selector checkboxes are added to each data row. This attribute
must be specified for all other attributes to take effect.

RequireSelection When the next button is clicked, you can specify that at least one of the
rows must be selected.

SaveSelectedOnly When the next button is clicked, typically an update event is fired on each

row of the mapper, regardless of selection. However, if you only want to
have update events fired for selected rows, then you would set this
attribute. You would normally use this property when your editable list is
displayed only on one page.

ShowsSelectedOnly The typical usage scenario for editable lists with selector is to have the
editable list display on one page to allow a user to select one or more
rows. Then, clicking next, the next page displays the same editable list,
but filtered down to the selected rows from the previous page. If you
want this behavior, then this attribute will be set on the editable list of
the next page, not the previous page.

Mapper The name of the mapper for this page element. If no mapper is specified at the
page element level, the page will use the mapper associated with the page.

Caption A caption to display on the wizard in the top right hand corner of the wizard page
describing the purpose of that step to the user.

Filter This is where you specify the filter criteria for the editable list values. The filter

criteria will probably contain references to either other page instance values, or
values from the initial navigation.

SummaryFilter

This filter applies to the summary of this editable list. Here you can provide a
different filter for the summary information than used for the editable
information. Typically your summary filter will be identical to the filter with
perhaps one or two additional criteria. If no summary filter property is provided
the Filter property is used for the summary filter.

info@netquarry.com

30 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Summary Pages

Wizard pages have the ability to show summaries of information that has been entered by the user. As
the user proceeds through the wizard entering data the summary of previous entries gradually
increases. For each instance of the wizard there is a summary available for it. In addition to these
default summaries, you are able to add your own summary information to represent information about
another piece of related data.

For example on a submit candidate wizard, you are creating a candidate activity record and the default
summaries show information about the candidate. You also want to show a summary of the order
related to the candidate summary. Then you can add a manual summary to summarize the order
information.

Default Summaries
To manage the way default summaries are displayed, you have to set the WizardPageAttributes on each
page element of the wizard.

Summary visibility choices
You manage the look of summaries by setting these WizardPageAttributes

e ShowSummary — necessary to set to true if you want summaries to be visible

e SummaryHidePrimary — do not show primary instance summary on the current page
e SummarylnitOpen — the pages summary should be initially opened

e SummaryOmitPage — this page’s summary is not available on other pages

e SummaryShowCurrentPage — include summary for current page even if page is not in primary
instance

e SummaryShowPrimaryOnly — Show only the primary summary on this page, rather than other
instance summaries.

info@netquarry.com 31 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Manual Summaries

To add a manual summary to a wizard page, you add a page element to the wizard that uses the
MapperSummary component. You specify a filter for your summary so that your summary shows the
data you need. Your filter will almost always contain field references, or references to query string
parameters, or embedded functions.

For manual summaries the main decision you have to make is whether you are summarizing detail or list
information. For detail information you don’t have to specify any attributes as long as your filter filters
down to one row of records. With no attributes set, the summary is laid out based on the mapper fields
metadata and mapper’s default columns properties.

For details you can also specify that the layout is vertical and all the fields will be laid out vertically in
two columns. Label and Value.

For summarizing lists views of data, you would specify the layout is horizontal. The summary would
then look like a locked list view.

When you do specify a manual summary, those manual summaries are the first elements on a wizard
page, followed by default summaries, followed by the page layout itself.

Insert or Update, Detail or List?

When you design your wizard, you must decide whether you want your wizard to insert a record, update
a record, show list of records. That’s easy enough, but the wizard has certain limitations as to when it
can update or insert.

Type of page Insert Allowed Update allowed
Detail Layout (primary instance) yes yes

Detail Layout (additional instances) insert only never

List Layout (any instance) never update only

So, we’re saying that on a detail page, only the pages related to the primary instance can be set as
updatable. Other detail instances always result in inserts. And for List pages, they are only ever allowed
to be updated.

When you navigate to a wizard (if it has a detail as the first page) you define whether the primary
instance is designed to update an existing record by specifying the query parameter “reg=nav”. If the
primary instance is intended to create a new record, then you would add the query param “req=new”.

Setting the request type can be done in a manual navigation, or by setting the NavNew
CommmandAttribute in a navigation target of a Menu Command, or the RequestType property of a
Navbar target.

info@netquarry.com 32 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

If the wizard is always intended to create new records, you can set the CreateNew WizardPageAttribute
on the first page element.

Wizard Page Properties
For wizard pages (those using the WizTemplate.aspx, template), there are a set of properties unique to
wizards

Navigation Properties (Page)

On a wizard page there are two options to exit out of the wizard. You click on the Finish button, or you
click on the Cancel button. When you design your wizard, you have to decide where to navigate when
you click on these buttons. There are two common options. When you cancel you navigate back to the
page that originally opened the wizard. When you finish, you navigate to the record you just created, or
you navigate to the page that originally opened the wizard.

There are three properties related to the navigation. Action, QueryParams, Target

Action Property
There are 6 options for an action...

Action property Description
Blank Page Navigate to a blank page (hardly ever used)
Repeat Wizard Navigate back to the first page of the wizard using the same navigation

parameters when the wizard was first navigated to.

MOP Navigate to the specified MOP (in Target property) with no default
filtering applied. For this type of action, you would additionally need to
specify QueryParams for filtering or use on the target. You would use
this type of navigation if your wizard submitted a candidate to an order,
and you wanted to navigate back to the related order detail that the
candidate was submitted to. The navigation to the target mop would
include the req=nav parameter.

MOP with item Navigate to the specified MOP (in Target property) passing the primary
key value from the primary instance as the primary key for navigation.
You can optionally add custom QueryParams. You would use this type of
navigation if you create a new order wizard, and want to navigate to the
order detail page of the order you just created. The navigation to the
target mop would include the req=nav parameter. Don’t use this option
on the Cancel action because the primary instance value may not yet be
defined.

info@netquarry.com 33 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Action property Description

MOP, new record Navigate to the specified MOP (in Target property) as a new target. You
can optionally add custom QueryParams. You would use this type of
navigation if you wanted to navigate to a new page at the end of the
wizard. The navigation to the target mop would include the req=new
parameter.

Return to Caller Navigate back to the page that called the wizard. You would use this
option if you navigated to the wizard from a detail and you wanted to
return back to the same detail. You don’t need to supply any additional
QueryString properties. Internally, this acts like setting the MOP action
with a target of [req.origmop:parmop] and a QueryParameter of
pk=[req.origrk:parrk]. See below for more details.

Target Property
Specify a MOP for the navigation. For this property you can use a literal static mop target, or use a
reference to a mop. e.g.,

assignmentsldetail

or

[req.parmop] — navigate to the parent mop (caller)
or

[reqg.origmop:parmop] — navigate to the original parent mop (original caller) or the last page
(previous caller)

Imagine you have the following scenario of a navigation chain, the table shows what the parmop and
origmop query parameters refer to

Page navigated in chain parmop is... origmop is...
DetailPage - -

Wizard1 DetailPage -

Wizard2 Wizardl DetailPage
Wizard3 Wizard2 DetailPage

info@netquarry.com 34 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

QueryParams Property
With this property you can add any custom query parameters you might require for your navigation
from your wizard. It’s a useful way to pass contextual information to a target page if necessary.

An example of using QueryParams property you can use queryparam instance values, page instance
values, literal values.

parkey=[req.parkey]&parmop=[req.parmop]&parmap=[req.parmap]&parrk=[req.parrk]&fk=[req.
Tk]&people_id=[newperson.people_id]&display_name=[newperson.display_name]

WizardAttributes

The Wizard also provides a WizardAttributes property that allow certain behavioral changes to the
wizard.

Attribute Description

DescBelowSummary | A wizard can provide a descriptive text that appears at the top of each page of
the wizard above any summary region. This text is obtained from the Wizard’s
Description property. Additionally, some descriptive text can specified at the
PageElement level that appears below the Page text (and above the summary
region), but is specific to each page element.

By setting this attribute, you can force all the description text (Page and
PageElement) to be rendered between the summary elements and the page
controls.

DescTwoPart By setting this attribute, the descriptive text will be split into two pieces. The
Page level description will be rendered at the top of each Page above the
summary, and the PageElement description will be rendered between the
summary elements and the page controls.

ForceSortOrder The wizard pages already support a sort order on each page element and this is
how the pages are ordered through the wizard. However, if the wizard page is
derived from another base wizard page. The order of the base page elements is
not ordered within the ordering of the actual page elements. This means that
the base page elements will appear after the actual page elements in any wizard.
To force all page elements from base page and actual page to be sorted, you
would need to set this attribute.

NoStepCaption Do not display a step caption on each page. E.g. Step 1 ofn ...

Caption Overrides
We support the ability to customize the caption on the buttons and popup messages. There are text
items you can add to the text collection of the page to override.

Override Description

Finish_Caption A caption to put on the finish button other than “Finish”. This is added as a text
record of the Page object

Continue_Caption A caption to put on the continue button on the Report Wizard pages.

info@netquarry.com 35 NetQuarry, Inc.

300 - Metadata Advanced

n etQU A R RY www.netquarry.com

Override

Description

PopupContinueText

The text to display to the user when they are about to run a report. Overrides
the default text.

WizardCancelPrompt

A message to show to a user after clicking the cancel button overriding the
default cancel prompt. This is a dedicate property on the Page object.

Cancel_Caption

A caption to put on the cancel button other than “Cancel”. This is added as a
text record of the Page object

Wait_Text

A message to display to the user after clicking the finish button overriding the
default Save message. This is added as a text record of the Page object.

Next_Caption

A caption to put on the Next button, other than “Next >”. This is added as a text
record of the Page object

Description

Puts the text in this property at the top of the wizard page just below the page
caption. This is a dedicated property on the Page Element object.

Back_Caption

A caption to put on the Previous button, other than “< Previous”. This is added
as a text record of the Page object

Continue_Text

A message to display to the user after clicking the next button. This is added as a
text record of the Page object.

Saving

When you click Finish on a wizard each instance of mapper is saved. The order in which the mappers are

saved is governed by any dependencies set up in the wizard through setting the CopyValues property. If

there are no dependencies configure (through copy values), the mapper associated with the primary

instance will be saved first.

info@netquarry.com

36 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Session Properties/Preferences

Session properties provide a way to store contextual information about an object. The session
properties that are added to an application are converted into a session object via the Code Generator.
That object is then referenced by custom code to create full customer specific session object.

When you create a session property, you add a record to the Session Properties screen in the studio.
The attributes chosen for the property will affect both the code generation (and therefore accessibility
to the property) and the behavior of the property.

Session Property Attributes

Attribute Description

SessionPersist This is the most important attribute to be specified. It will result in the code
generation process creating a session property for this item and therefore
can be referenced in code.

You would set this attribute (by itself) if you wanted to create a session
property that has its value determined from an identically named application
property.

DynamicOnly Setting this attribute implies that the session property will not be initialized
from an identically named application property. The session property will
have a default value (set from the DefaultValue property of the Session
Property), but the property will be set at runtime, either after loading from
the preference table, or from some custom code during start up.

GenEmbeddedFunc Setting this attribute will result in an embedded function being registered
that performs a simple replacement. The embedded function will have the
same name as the session property. E.g. a session property called
Customerld will have an embedded function created called !fnCustomerld.
The value replacement associated with the embedded function is obtained
from the value of the session property. Typically your session property value
is assigned at run time in the session startup event handler.

LongText If the session property is created by the studio as a by-product of creating a
new application level parameter (that is, a new application custom property)
that process can specify whether the property sheet should be displaying a
special edit box that supports the editing of data more than 255 characters.
This attribute does not have any effect at runtime for a session property.

ReadOnly Setting this attribute means the session property will only have a read only
read only property generated (assuming SessionPersist). A session property
marked as ReadOnly is not going to marked as DynamicOnly because the
property would need to be initialized. In this case, from an identically named
Application property.

SupportsReferences Not applicable to Session Properties

TreatAsField Not applicable to Session Properties

info@netquarry.com 37 NetQuarry, Inc.

300 - Metadata Advanced

www.netquarry.com

netQUARRY

Session Property Examples

Requirement

Method

Session property that is
initialized from an application
property of the same name.
FOR APPLICATION PROPERTIES

There are a couple of ways to do this.

The easiest method is to add a custom application property from the
link on the application property page. In creating an application
property through the new property wizard, it will also create a session
property of the same name.

For the value of the session property to be derived from the
application property set in meta data, only the SessionPersist
attribute should be set.

If you need to create a session property manually, the key is to make
the name of the session identical in spelling and case to the name of
the session property. Once done, make sure that only the
SessionPersist attribute is set.

Session property that is
initialized from code

For other levels of preferences (the level is in fact arbitrary), where
the session property is not associate with an application level
property, you would manually create the Session Property. When
creating such a property, you must set the SessionPersist and the
DynamicOnly attributes.

They DynamicOnly setting means not to default the value from an
application property. The default value in this case is set by the meta
data Default property of the Session Property.

To set the value of the property, you must manually assign the value
in some code. Ideally that code would be executed as soon as the
application is loaded. The most typical place to execute this code is in
the AfterLoad method of the application event handler.

Session property that provides
an embedded function for use
in filtering or SQL statements
(referring to the value of a
session property in meta data)

Basically you can use either of the above methods to create a session
property and have the value assigned. To have an embedded
function created for the property, you would additionally set the
GenEmbeddedFunc attribute.

If your session property is called MyProperty, then the embedded
function created would be referred to as [fnMyProperty. The case of
the embedded function must match the case of the property name.
Usual syntax rules apply for embedded value replacement.

Session Property Levels

A session property is typically associated with a level. A level is just an abstract idea that helps define

the purpose of the property. The Level of a session property is defined by the code that loads and saves

the preference values and not related to any meta data definition. The names of the levels are also

completely arbitrary.

info@netquarry.com

38 NetQuarry, Inc.

300 -

Metadata Advanced www.netquarry.com

netQUARRY

Creating a Session Object
Let’s say you have three levels of preference. Country, Company, Person. The first step is to create

three static methods that create an instance of a session object that automatically loads the appropriate

property values for a given item and preference level. The static methods should be defined in an

implementation specific session object, derived from the code generated session object.

It is also necessary to create a generic Createlnstance method that will be assigned as the Session object

on the current Application object. That session object assignment will be set during the application

event handler, AfterAuthenticate. It’s at that point that the sufficient user information is available to

construct a session object. It’s typical that instance object associated with the application is equivalent

to the person level of session object.

An example is given below.

using System;

using System.Collections.Generic;
using System.Text;

using System.Data;

using NetQuarry;

namespace CompanyName.Common

{

/// <summary>

/// Types of preference levels

/// </summary>

public sealed class PreferencelLevel

{

}

/// <summary>User level preferences</summary>
public const string PERSON = "person’;

/// <summary>Company level preferences</summary>
public const string COMPANY = "company';

/// <summary>Country level preferences</summary>
public const string COUNTRY = "country';

/// <summary>

/// CompanyName Session object.

/// </summary>

[Serializable(Q)]

public class Session : CompanyName.Data.Generated. companySession

{

/// <summary>

/// Creates and initializes the Session object.

/// </summary>

/// <param name="appCxt'>The application context object.</param>
/// <returns>The created session object.</returns>

internal static Session Createlnstance(lAppContext appCxt)

{

Session session;

if ((0 == string.Compare(appCxt.UserContext.ID, "EAP_Reporting.Util", StringComparison.Ordinal))
Il (0 == string.Compare(appCxt.UserContext.ID, "EAP.Scheduler™™, StringComparison.Ordinal))
Il (0 == string.Compare(appCxt.UserContext.ID, "EAP.Studio"™, StringComparison.Ordinal)))
{
//---a real user has to be chosen for non interactive processes
//---unless of course you create users with id’s described above
//---for each implemtnation it will be specific to that
//---these are just examples, but the purpose of this code is required.
appCxt.UserContext.ID = "system_user";
appCxt.UserContext.Name = ""Non Interactive User";
appCxt.UserContext.EmailAddress = *'system@companyname.com';
session = CreatelnstancePerson(appCxt, ‘‘'system user™);

info@netquarry.com 39 NetQuarry, Inc.

300 - Metadata Advanced

3
17/

V4
/77
/77
V4
77/

www.netquarry.com

netQUARRY

else
{ _
session = CreatelnstancePerson(appCxt, appCxt.UserContext.ID);
3
return (session);
<summary>
Creates and initializes the Session object for person values only
</summary>
<param name="appCxt'>The application context object.</param>

<param name="personlD">The value of the person id.</param>
<returns>The created session object.</returns>

public static Session CreatelnstancePerson(lAppContext appCxt, string personlD)

{

Session session = (Session)NetQuarry.Session.Createlnstance<CompanyName.Common.Session>(appCxt);
session.PersonlD = personlD;

session.LoadPreferences(personlD, PreferencelLevel _PERSON);

return (session);

/// <summary>

/// Creates and initializes the Session object for company values only

/// </summary>

/// <param name="appCxt''>The application context object.</param>

/// <param name="'companylD">The value of the company id.</param>

/// <returns>The created session object.</returns>

public static Session CreatelnstanceCompany(lAppContext appCxt, string companylD)

{

Session session = (Session)NetQuarry.Session.Createlnstance<CompanyName.Common.Session>(appCxt);
session.CompanylD = companylD;

session.LoadPreferences(companylD, PreferencelLevel .COMPANY);

return (session);

/// <summary>

/// Creates and initializes the Session object for country values only.

/// </summary>

/// <param name=""appCxt'>The application context object.</param>

/// <param name="countrylD">The value of the country id.</param>

/// <returns>The created session object.</returns>

public static Session CreatelnstanceCountry(lAppContext appCxt, string countrylD)

{

}
}
}

Session session = (Session)NetQuarry.Session.Createlnstance<CompanyName.Common.Session>(appCxt);
session.CountrylD = countrylD;

session.LoadPreferences(countrylD, PreferencelLevel .COUNTRY);

return (session);

Referring to a Session Object
In the startup process of the application we’ve already mentioned that the application object is assigned

a session object. That session object created from static method declared above. The session object

created is of type CompanyName.Common.Session, but the application session property is of type

NetQuarry.Session. Therefore, when you need to refer to your company specific session object, you

have to cast the NetQuarry.Session to the appropriate implementation specific object.

When the session object is created

/// <summary>

/// Handles the AfterAuthenticate event.

/// </summary>

/// <param name="sender'>The application context object.</param>

/// <param name="e'">Event arguments.</param>

public override void AfterAuthenticate(lAppContext sender, EAPEventArgs e)

{

Comensura.Common.Session session = CompanyName.Common.Session.Createlnstance(sender);
sender.Session = session;

info@netquarry.com 40 NetQuarry, Inc.

300 - Metadata Advanced

n etQU A R RY www.netquarry.com

And how to use it. Basically cast the session object on the app context to the implementation specific
session object...

CompanyName.Common.Session cs = (CompanyName.Common.Session)appCxt.Session;

Loading and Saving Session Properties
Session properties may be persisted to the database table xot_preferences. This is a system table that is
added to all NetQuarry databases. That means, Studio, Meta Data and Operational Data.

Load Preferences
To load preferences from the database, you simply use the LoadPreferences method on the Session
object. The method is declared as

public void LoadPreferences(string ownerlD, string level)

You’ve seen this method used already in the example above. Basically it takes an Id value of the owner
of the preferences and the level of preference to load. The level parameter as already discussed defines
the category of the preferences to load. The ownerlD parameter defines which set of preferences in
that category should be loaded into the session object.

You would typically not need to directly create and load a session object because you will invariably
have defined a helper function on the implementation specific session object to create and load your
session.

Save Preferences
To save preferences to the database, you use the SavePreferences method on the Session object. The
method is declared as

public void SavePreferences(string ownerlD, string ownerLevel)

The parameters of this method are identical to LoadPreferences method. Basically it takes an Id value of
the owner of the preferences and the level of preference to save. The level parameter as already
discussed defines the category of the preferences to save. The ownerlD parameter defines which set of
preferences in that category should be saved back to the database.

Inside this function call the preference collection is interrogated and those preferences that are marked
as Dirty (ie. been changed since loaded) and Persist are saved to the database. Preferences are always
created with the Persist attribute specified.

Preference Handling
The platform provides a mechanism for creating, storing and retrieving preference settings. The
preference handling allows for a hierarchy of preferences to inherit down from higher to lower level.

info@netquarry.com 41 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

For example, a preference exists to set a limit on expense expenditure., e.g MaxExpense. For a company
there may be default limit. However, for specific users, the limit may be different. So the hierarchy of
preferences is from company to person where the person level preferences overrides the company

preference.
Preference Company Level Value User A Value (Person Level) User B Value (Person Level)
MaxExpense $400 $500 Not specified

When User A creates an expense, they see a limit of $500. When User B creates an expense, they see a
limit of $S400 as they take the default value from the company level (next level up from person).

Preference Storage

All preferences are stored in a platform table xot_preferences. At no time should you manually write
any data to this table. It is possible to select from this table, but doing so, you potentially lose the ability
to read values in the correct hierarchy order.

As already mentioned, preferences are associated with ‘levels’. The level is simply a name in which to
group preferences related to the same business object. Within a level, preferences are associated with
specific object data. For example, the Company preference level contains the preferences associated
with companies in the system. Within the Company preference level, there are preferences specific to a
company.

Preference Schema (not all schema described)

Column Description

param_nm The name of the preference.

owner_id The key value of the object associated with the preference level.
owner_level The name of the preference level.

pref value The value of the preference for the owner_id.

Preference Hierarchy

The preference hierarchy is a completely arbitrary construct. You will create a hierarchy based on your
own requirements. The majority of situations you will have a Company and Person level of preference
where Person level preferences default from the parent Company level preferences.

Your hierarchy can be branched, rather than a single trunk if it makes business sense. You just need to
make sure that your branching does not create circular references between preference levels.

You express the hierarchy through metadata and code added to your session object.

A basic preference hierarchy is as follows. We'll use this hierarchy as an example of how to configure
preferences on an application.

Global -> Company -> Person

info@netquarry.com 42 NetQuarry, Inc.

300 - Metadata Advanced

www.netquarry.com

netQUARRY

Setting Up Hierarchy in Metadata
To configure your hierarchy in metadata, open the studio and navigate to the Preference Levels tool

(near bottom of tree)

You are presented with a list view to specify the preference hierarchy and necessary data to manage the

preference hierarchy. The following table describes what the fields represent.

Field

Description

Module

The module for the meta data. Probably best to create a new preference specific
module for these purposes. For this example,. companyname_preferences

Preference Level

REQUIRED FIELD. The name of the preference level. This will be the name
associated with preferences when saved to the database

Parent Preference
Level

Optional Field. The name of the parent preference level in the preference
hierarchy. If this is the highest level in the hierarchy, then this field is blank.
Otherwise you set this to a name you specified in the Preference Level column.

Session Instance
Creator

REQUIRED FIELD. The name of a method that will be used to populate the set of
preferences for that preference level. You will create a method with the same
name in your Session object.

Sort Order

Optional Field. The ordering of the preferences. This is not yet used.

Attributes

Optional Field. A way to modify the behavior of the preference level. These
attributes are based on the PreferencelLevellnfoAttrs enumeration

PreferenceLevelinfoAttrs Description

Enum Value

1 - Disabled The preference level is not in use

2 — NoParent The preference level has no parent and therefore should not

interrogate a parent for a default set of preferences.

4 — ParentlsGenericlnstance | The parent of this preference level is a generic session object, not
a parent specific to a preference hierarchy level. The generic

instance is an informal approach to having global preferences.

Owner Key Name

REQUIRED FIELD. This is the name of a field in preference mapper that defines
which field is to act as the key for the preference Ul. This will be explained in
more detail, later when describing the Ul requirements to manipulate preference
values

Owner Lookup Sql

REQUIRED FIELD. This is a parameterized SQL statement used by the preference
Ul to determine the value of the owner key name. Typically when you provide
Preference Ul, it’s as a subform and therefore the foreign key is passed down to
the preference page as a filter. It’s this filter that is tagged onto the
parameterized SQL to determine the value of the owner key.

Parent Lookup Sql

Optional Field. This is a parameterized SQL statement used by the preference Ul
to determine the key value of this level’s parent preference. If the current
preference has no parent then this value is not provided. If the preference has a
parent level, then a SQL statement must be provided.

The following table describes the meta data used to define the Global -> Company -> Person preference

hierarchy.

info@netquarry.com

43 NetQuarry, Inc.

300 - Metadata Advanced

Setup of preferences as described

netQUARRY

www.netquarry.com

Preference Parent Preference Session Instance Attributes | Owner Key Owner Lookup Sql Parent Lookup Sql
Level Level Creator Name
global CreatelnstanceGlobal 4 | global_id select ‘global_id’
company global CreatelnstanceCompany 0 | company_id select company_id select ‘global_id’
FROM company
WITH(NOLOCK) WHERE
{o}
person company CreatelnstancePerson 0 | person_id select person_id FROM select company_id FROM person WITH(NOLOCK)
person WITH(NOLOCK) WHERE person_id = {0}
WHERE {0}

Here the global preference level has a parent instance which is the default session instance.

Setup of preferences with Global preference as top level (no generic instance as parent)

Preference Parent Preference Session Instance Attributes | Owner Key Owner Lookup Sql Parent Lookup Sql
Level Level Creator Name
global CreatelnstanceGlobal 2 | global_id select ‘global_id’
company global CreatelnstanceCompany 0 | company_id select company_id select ‘global_id’
FROM company
WITH(NOLOCK) WHERE
{o}
person company CreatelnstancePerson 0 | person_id select person_id FROM select company_id FROM person WITH(NOLOCK)
person WITH(NOLOCK) WHERE person_id = {0}
WHERE {0}

Here the global preference level has no parent instance as specified by the attribute value of 2.

The owner lookup sql for global (also parent lookup) is set to return the value ‘global_id” which is the value key associated with the global

preferences.

info@netquarry.com 44

NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Once the metadata is specified, the next step is to run the Code Generation tool. The new preference
level metadata is interrogated and adds some code to the generated Session object.

For each non disabled preference level row, the CodeGenerator creates...

1) A function stub that throws an error when a session object is created for that preference level.
This is to remind you to create an actual implementation of the session creator for that
preference level in the derived session object.

e.g.

/// <summary>

/// Stub method for CreatelnstanceCompany

/// </summary>

/// <param name="appCxt''>The application context</param>

/// <param name="company_id">The owner id value for the session</param>

public static CompanyName.Session CreatelnstanceCompany(lAppContext appCxt, object company_id)

{
string msg = string.Format(appCxt.Textltems.GetText(NetQuarry.Globalization.IDS.Session.SessionCreatorNotimpl,

"You must implement a method for "{0}" in your derived session object.')

throw new EAPException(msg, "CreatelnstanceCompany'));
return new CompanyName.Session();

2) A preference level constant name that you can refer to in your code.

namespace CompanyName

{
#region PreferencelLevel Generated Code
/// <summary>
/// Types of preference levels defined in the PreferenceLevels meta data
/// </summary>
public sealed class PreferenceLevel

{
#region PreferenceLevel Constants
/// <summary>company level preferences</summary>
public const string COMPANY = *‘company';
#endregion

}

#endregion
}
Session Instance Creators
The next step is to create session instance creators in your derived class matching the stub methods in
the generated session class.

If you look carefully at the example stub method, you will see that the company_id has a .NET type of
object. This is because we don’t know the actual data type of the company_id field. In your own
implementation of this method you will know the data type of the company_id field, so you would set
the method signature to match your data type. Assuming the company_id is string, in your derived
session object (derived from the generated session class), create the function ...

public static Session CreatelnstanceCompany(lAppContext appCxt, string companylD)

Session session = (Session)NetQuarry.Session.Createlnstance<CompanyName.Common.Session>(appCxt);
session.CompanyID = companylD;

session._appCxt = appCxt;

session.LoadPreferences(‘'global_id", PreferencelLevel .GLOBAL);

session.LoadPreferences(companylD, PreferencelLevel .COMPANY);

return (session);

}

This example shows how the global preferences are loaded, followed by the company level preferences.

info@netquarry.com 45 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Creating Preferences

That’s the basics covered for the preference infrastructure. The next step is to define what preferences
are to be used. Open the Studio and navigate to the Session Properties. If you want a preference to
represent the maximum value of expenses created, you add Session Property with the name
“MaxExpenses”. The type would be set to Decimal, the category set to Custom and the attributes set to
160 (Dynamic Only and SessionPersist).

In terms of what preferences to add, you should probably add two further items. UpdatedBy (type:
string, attrs: 160) and DateUpdate (type: string, attrs: 160). These will store information about who
updated preferences and when.

Now you need to regenerate the session object again to get the new property associated with the
session object.

Preference Ul

Preference Mapper

The first step to create preference Ul is to create a preference mapper. You can base the mapper on any
view/table and one as good as any is xot_preferences. The key to remember is that this table will not be
interrogated directly when the preferences are displayed and saved.

For example purposes we assume you are creating preferences for companies.
Create a new mapper, “company_prefs” using View Name of “xot_preferences”.

Manually add the fields to this mapper.

Key Name Col Width Cell Type .Net Type Data Type | Attrs Notes
company_id 20 text string string 4 Attrs: Set to Primary Key of mapper
UpdatedBy 20 text string string 514 Attrs: Locked and UseDefaultOnUpdate.

Set properties
DefaultValue to fnUserlD()
Caption to Updated By

Date Updated" 20 text datetime datetime 514 Attrs: Locked and UseDefaultOnUpdate.
Set properties

DefaultValue to fnNow()

Timezone to 0,.

Formattog

MaxExpenses 15 Currency Decimal money 0 Set properties
Culture to field reference pointing to a
currency value (or hard coded)

You can add further preferences to this mapper. The important point to remember is that your field
keyname should match exactly the case and spelling of the Session properties you add.

Preference Handling Extension

Now you have to create a preference extension. You only have to create one extension to be used on all
preference mappers. There is a platform extension template class from which you derive your
preference extension.

info@netquarry.com 46 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Create a new extension class, for example PreferenceHandler. You can use your own name, whatever
makes sense to you.

In your project, add a reference to EAP.Extensions.Preferences. Then derive your extension class from
the NetQuarry.Extensions.Preferences template class. You specify the type of your session object as the
template parameter.

/// <summary>
/// Implementation of generic preferences extension using CompanyName.Common.Session as template type.
/// </summary>

public class Extension : NetQuarry.Preferences.Extension<CompanyName.Common.Session>

{
}

To get the preference handling to work, there is no further coding required.

Once compiled and added as an extension in the components list in studio, you can associate your
extension with the preference mapper.

Preference Pages

Now that you have a mapper, you can create a preference page to display the preferences. The page
must use the TabbedSubformTemplate template. The main slot uses the phantomdetail component.
For this example, we’ll call the page companyname_preferences!company_prefs.

Preference Subform
Associate this page with a subform hanging off your main company list, or detail page. Set up the
ViewKey relationship to pass down the company_id from the parent to the subform

Preference Levels Revisited

There is one last task to perform and that is associate a preference level with a page that presents the
preferences for that level to the user. It’s quite possible to have many different pages associated with
the same level of preferences. You might have different types of companies, that have different
preference pages.

So back in the studio, navigate to the Preference Levels metadata and select the row associated with the
company preference level. In the Pages subform, add the page
companyname_preferences!company_prefs.

Now the preference support is fully configured. All that’s left is for you to visit your preference page on
your company subform and layout the fields as you prefer.

Adding More Preferences

That process may seem a little complicated, but once the preference handling has been set up for one
preference level, add preference Ul support for other levels, is a question of repeating the same
metadata steps. No more code changes are required, other than to add your Session Instance creator
methods.

info@netquarry.com 47 NetQuarry, Inc.

300 - Metadata Advanced é é n etQU A R RY

Adding New Preference Level

Add Session Instance Creator

Add new Preference Mapper

Add new Preference Page

Add new Preference Subform

Add Preference Level and associate with Preference Page.
Regenerate Session class.

Adding New Preference

Add to Session Properties
Add to preference mapper
Modify layout on page
Regenerate Session Class

info@netquarry.com 48

www.netquarry.com

NetQuarry, Inc.

300 - Metadata Advanced

n etQU A R RY www.netquarry.com

Using Stored Procedure as the DataSource for a mapper

There may be occasions where the built in functionality of mappers is not sufficient to give the
appropriate results and the only way to get the right results is to use a stored procedure. Once you've
decided to use a stored procedure, you will clearly want to have the results of your procedure use any
filtering specified by the developer and any filtering specified by the end user. Because you are also
relying on the stored procedure to send back results to the mapper to be displayed, it is also up to the
creator of the procedure to support Sort criteria and to provide a count of records matching the
specified criteria.

The Procedure
If you want to fully support all the available functionality, your procedure must accept the following type
of parameters.

FILTER The filter criteria specified by mapper, filters, page filters, navigation filters as well as
filters entered by the user on the filter by form row for fields not marked with the
FilterOptions.PreFilter attribute.

PREFILTER The filter criteria specified by users entered on the filter by form row for fields that are
marked with the FilterOption.PreFilter attribute.
SORT The sort criteria for the results.
OPTIONS A flags parameter hints what type of results are required to be returned to the mapper.
The flags are
0 The procedure must return a result set to be displayed to the user.

This populates the list view or detail of a page.

1 (aggregate) | The procedure must return a single row result set containing the
expected aggregated data.

2 (count) The procedure must return a number representing the count of
records matching the filter criteria. The count must match the
number of records returned when the procedure is called with

OPTIONS of O
Any other Any static parameter, or dynamic parameter represented by an embedded function.
parameters
you want
Filter Clauses

The PREFILTER is intended to be used to perform filtering to obtain an intermediate set of results. If you
are performing an aggregate, you would want to filter the data being aggregated by a certain set of
criteria before filtering the post aggregated data.

e.g. you could prefilter data to be aggregated by asking for data only from a certain day and then
filtering the sums or averages of the aggregated data using the FILTER criteria.

Example
Assuming you have the following filter criteria...

Mapper (static filter): company_id=!fnCompanyID$()

info@netquarry.com 49 NetQuarry, Inc.

300 - Metadata Advanced www.netquarry.com

netQUARRY

Page (static filter): status_id=1
FBF Field (date_submitted PreFilter): date_submitted = Last Month
FBF Field (revenue not PreFilter): revenue > £50000

The PREFILTER criteria will be constructed as follows

(date_submitted >= "2008-12-01 00:00:00" AND date_submitted < *"2009-01-01 00:00:00%)

The FILTER criteria will be constructed as follows

company_id="SOME GUID” AND status_id=1 AND revenue > 50000

Problems With Filter Clauses

You may have noticed a problem with the current implementation in that we expect the static filters
(because they are munged with the non PreFilter criteria) to be applied after the pre filter. When you
are performing aggregations, you really want to aggregate as little data as possible to improve
performance. You would want the static filters to be applied initially in the PreFilter stage and then
aggregate a few records to be filtered again in the final FILTER stage with the regular FBF filters.

Fogbugz Case 4405 has been created to implement the filter clauses correctly so the static filters may be

applied during pre or post filtering, leaving that decision to the developer.

Here’s an example skeleton of a procedure.

IF EXISTS (SELECT name FROM sysobjects WHERE name = "my procedure®)
DROP PROC dbo.my_procedure
GO

CREATE PROCEDURE [dbo]-[my_procedure]
-- Add the parameters for the stored procedure here
@pPreFilter varchar(4000) = °*,
@pFilter varchar(4000) = **,
@pSort varchar(200) = **°,
@pOptions int = 0,
@pExtraData varchar(4000) = **
AS
BEGIN
-- SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.
SET NOCOUNT ON;

-- CREATE A TemporaryTable
CREATE TABLE #MyTemp

(
company_id varchar(32),
revenue money,
-- etc

)

-- insert the temp table

INSERT INTO #MyTemp

SELECT company_id,
revenue,--etc

FROM MyTable

WHERE @pPreFilter

info@netquarry.com 50 NetQuarry, Inc.

netQUARRY

IF @pOptions & 0x00000001 = Ox00000001 -- AGGREGATE RESULTS

BEGIN
SELECT
null AS company_id, -- select NULL"s for non aggregated fields
SUM (revenue) as revenue
FROM #MyTemp
WHERE @pFilter
RETURN
END
ELSE IF @pOptions & 0x00000002 = 0x00000002 -- COUNT RECORDS
BEGIN
SELECT COUNT(*) FROM #LEDGER_TRANSACTIONS
RETURN
END
ELSE -- RETURN RESULTS
BEGIN
SELECT * FROM #MyTemp WHERE @pFilter ORDER BY @pSort
RETURN
END
END
GO
Setup the Mapper

Now you have the procedure, you can move on to setting up the support in metadata. The first thing
you need to do, however, is create a dummy table or view that contains the same schema as your
procedure would return. You would use this to initially create your mapper using the database slurper.
It’s much quicker to do it this way than manually adding fields.

If you do create a dummy table, or a dummy view, you should remember that the slurper is going to try
its best to identify primary key fields to support insert and update of data. Be careful here. Your
procedures are obviously not updateable and the tables to update that your slurper may identify
probably shouldn’t be accepting data changes from a stored procedure based mapper. We'd
recommend making your procedure based mapper read only.

In the mapper attributes, set the SkipCodeGeneration attribute. The code generator attempts to
perform a query on the underlying data and may fail if the stored procedure parameters are not set up
properly. It’s unlikely you will want to use such a mapper in code as it’s not updateable.

Finally, in the QuerySQL property of the mapper, you specify your procedure and any arguments that
are necessary.

my_procedure [[PREFILTER]], [[FILTER]1. [[SORT11. L[OPTIONS]], !fnUseriD$()

netQUARRY

Custom Properties
When you add re-usable components to your application, you may want to allow configuration

properties to be added to your object so that in different implementations of your object, you can have

different behavior.

Adding Custom properties
At the bottom of each property sheet, there is a link “Add Property” that pops up a wizard to let you

specify the details of the property.

Parameter Wizard

Create a Custom Property
After pou create the property definition, vou will see the properties in the property
sheet when vou create your object.
Eroperty Mame: |dentitylncrerment
Data Tupe: Integer .
Object Type:
LCategony: Custom v
Applies Ta: 4
[< Back " Mest »] [Cancel
Field Description

Property Name

The name of the property that you want to add. This will appear in the property
sheet of object you’re adding the property to. The property name should not
contain spaces

Data Type

The data type of the property. This is not just a standard set of .Net datatypes,
like string, int, etc. You can set the datatype to be Mappers, for example and
then when you use the property, you will have a picklist from which to select
one of the mappers in the application.

The full list of data types is found in the studio under System Maintenance,
Parameter Types.

Category

The category of the property. This is a simple categorization of what your
property belongs to. In the property sheet of an object you'll see different
categories of properties. Here, you decide which category your property goes
into. The list of available categories can only be modified by NetQuarry.

Applies To

This setting may not be visible when you add a custom property. It’s only
supported for certain objects. If you don’t see this property, it means that your
property will be added to the property sheet and will be visible on the property
sheet of every other object of the same type. If you do see this property, you
will only see the custom property on the object to which you added the
property. You’ll only see this property on Components and Scheduled Tasks.

netQUARRY

After adding a new custom property, you’ll see it in the property sheet with a little asterisk next to the
name, indicating it is a custom property.

‘% NetQuarry - [Extensions - (111 Rows)]

o Fle Edit Wiew Tools Window Help

| Back - = | (iNew [save [F) Refresh | {3} Home :#'Properties | Run | cha
Studio Explurerl Properties |

Extensions - (111 Rows)

B:lﬁl Maodule Name
El Custom
external_documents ExternalDocu
B Layout [identity ~ Identity
Panedlian cnet_impart Impork

NetQuarry - [Extensions - (111 Rows)]

o Fle Edi Wew Tools Window Help

< Back - = | [Mew Save Refresh ‘ﬁHome ;’?Propart\es |@Run |"ﬁ_?|§hanges

Studio Eplores | Propeties | Extensions - (111 Rows)
gi:‘ el Module Name
= Layout
external_documents ExternalDocument
Fagedlign
Pagewidth .|dent\ty) Identity
P penetTnor P G| mnor
cnet imoart ImportDataTemol:

Finally, you also might like to give your property a description so that other developers will know how to
use your property. This is especially important on properties added to objects where the property
appears for all objects of that type. Your property may only be valid on that single object.

To add a description, go to System Maintenance, Parameters. Find your property and set the
Description property.

£ NetQuarry - [Parameters - (2 Rows)]

o Fle Edt iew Tools window Help
¢ Back - = Forward ~ | [New [g]Save [¥]Refresh | 3} Home :£'Froperties |g# Run | {ff] Changes & Application:

Modulss 52 Data Sourcss 3 Components = [Pages [T

Studio Explorer | Fropeties | | Parameters - (2 Rows)
23l ‘ Module Type Object Type Sub-Ohject Type

El Code Generation ‘

Defaultalue ¥ |custom_propettiss companent Comensura,Extensions.
B studio ‘ |custom_properties | IdenttityColumn String datamapper

DocumentationReferer ®
|E Text |

Description [Specify the increment valus for the identity column. Default is 1]

Your property will now have a description (you have to shutdown and restart studio to see the
immediate effect).

‘% NetQuarry - [Extensions - (111 Rows)]

ol File Edit Wiew window Help

= Back = =» ‘ [New Savs Refresh |ﬁHUme S properties ‘@Run H’Eghangss @ﬂpplicatiuns
Studio Explur&ll Properties |

Extensions - {1 Rows)

|i | 2 Module Name Component Typ
B Custom iden
e b |identity Identity Extension
B Layout
Pagealign
Pagewidth

Add Property.

IdentityIncrement™

Specify the increment value For the identity column, Default
sl

netQUARRY

Deleting Custom Properties
To delete a custom property, you go to System Maintenance, Parameters and delete your custom

property.

You should be careful when deleting custom properties, just in case you delete a property of the same
name associated with a different object.

netQUARRY

How to store documents and images into a BLOB field
1. Inorder to store afile in a table in the database, you must have 2 fields defined— 1 varchar field for the
name of the file and 1 image field for the file data. For the purposes of this example, we have

Zolumn Mame Data Tvpe Allows Mulls
% document_jid uniqueidentifier]
related id unigueidentifisr
document_nm nvarchar 100
docurnent_daka image
descripkion nvarchar{ 2000
created_user_id nvarchar(b4)
modified_user_jd nvarchar(64)
created_date datetine
modified_date datetime
rewvision ink
is_deleted bit

2. Set the Field Type of the text field (document_nm) to FilePath, make the field required, and set the
FileDBField to the key name of the FilePath field.

" Meluarry - [Mappers - (30 Hows)]

= B Ed Yew Toch Wndw ek -8
HET [YNew [savn [{) Refresh | (Y rioma eroperties |]0un | (T Changes i dwekeations [odules I ot Soueces [T Camponents « i Paoes [Mwoers. il tiwigators - I s -
St Exploter | Fiupsries Mappars - (1 Rows)
Fodule Rame Vicw Name: Data Seurce Attributes Atrbutes:
et [Appendrson]
v |t doxcument frim— (]] [bwectonsl
® il i M | 1 [DebugMode
O] bemyorintn
[enyinseet
[Demundate
[Fastmat
[l Logeaeiete
[l iogirarsactons
[MoChertvabation
ml
[MoCSseverride
[Msupeehek
[MoHeaderFeresrg
Fmb | Dtanions | Pemissions | Fiters | Captions | Descriptions | Ussr-Defined Tast | Custom lavr ames
Finlds - (11 Roves)
5 Pk Finburvicr Attrinien. Ce00000CE Key Mame Cokamn Cecew | Packist Colrm wodth | Cel Type SET Type Bata Trpe Inchake Flavie | & s
B Fierdptions: o000] At -
Gronpinglosd [urosssn
Ipmeefiomd ik [Cumtims
B Listioptions: o000 [] cameimit
M [] Def wutFrenParant
Haslerggh 100 O
HadengethTruncate 0
[O criibalict
SertDescing] Plerse
Taphttrbutes (] Frasaecobain
& Code Generation] remcageon
Wata n (] MemiCorkent
< (] 1dentty
T gy
(] Locked
e I 4 Parmisgions [noenty
Fisbarhiield Protin Read i Configuration Narigation O
Folder b Adviitrators = =] = Ol
] Devslopars = = = = [ukreste
Sl L LostPasswerd =] =] =] = (¥ Reured
i Progesty Regiterliser =] =] =] [=] :— ::'d"'"d"“'d
FieInDB . (3] & &]) nste
Ths uglcasadind e o2 sbormed i Hom cftabuorio i pathb [Subformicey
a fie... (] uniuster -
Raady (Cument Medule: document Mgf2008 foo_meta

netQUARRY

3. Setthe BLOB field’s width to 0 (hidden) and set the ExcludeFromSelect attribute as well. Note that you
should NOT set any exclude flavor or the FilePath field will display ‘/ERROR!.’

% MetQuarry - [Mappers - {30 Rows]]

= B B Yew Joch Wndow b -8 %
HE Yo [sawn [7) Refresh | (SYHome (Sroperties | 8 10un | ([Changes T dpgleations 5 Modyles 33 ot Sources [T Components « 8 Pages [Manoers. L bigators + IE Pickit -
Shudo Explover | Frogsrims Mappers - (1 Rows)
Ha | Module Mame Wicw Name Data Seurce. Abtributes Brbutes
& e el] Ty =
B Colfypeditrintes (0000000 b et T o v (-
[Feidishavior dttribotes (00000 ® | 1 L L] DebugMode
8 FlterOytions xO0000000 DemDrietn
Grovpingtoee [enyinseet
Ignorsoviock [Cemipdske
B LntOyption Ao E F-""":'
Logealleiste
Hax
Mastergth LA E va":-:nmvmm
HasLergthTnreste Eibocort
Hn (] —
b [Hesngpeshe
Taghtirbutes [HoteaderFrrnsng
B Code Generation
G Data Fmb | Dtanions | Pemissions | Fiters | Captions | Descriptions | Ussr-Defined Tast | Custom lavr ames
B Format
oy Finlds - (11 Rows)
Ferrest Key Name Cokamn Crder | kit Cobam Widh | Cel Type SET Type Data Type Inchate Flavar | & e bpes
Headerloon m|
Fanfonmat dooument_id 1 0| Tewtbo Il
Sty selabedd_id z L= I
B Layouk O
o ¥ O
B HideFurver 0000 |
3 Labekptions CeDO000000 % X Ll
& LockFAaver CELRRARERA 7 3 5 e
[l Postinopticns (EA0020000 crested dete] 12 Teotfon System.DiskeTme daketime
& ::: ;‘ nodtied_dste a 12| Tt System.DateTme datntme a
&Ilﬂr“m -4 o0 ievsen 1w U Tettian Spten b0 0
& _deleted 1 0| Chackfion: System.Doclesn | b * [
Lrkrey " “ml =
Likhacp =
Summarsey Bormissions =
SR Pt Rt ek Contiuration Narvigation 0
a8 "c"‘ V| Advieitratons &= T =l Bl 0
ontrobiane - [
Parereiuld Shespes g = £ - Ol
LostPaganard [E] [E] [E] =] |
fud Progesty Regitrelbier =) = =] =1 =
User G = = a ey
s s =]]] 0
Thoe by b e v g shuontacmbae akow e Hhis Fk. Ll
Ready (Cument Medule: document Mgf2008 foo_meta

How to retrieve data image files in a template

You can use an image stored in the database in a template with simple substitution. The image is returned as a
binary object and will display normally in an image tag. For this example, assume the table is called companies,
with the image stored in the field logo_data, and the primary key is company_id.

<img

src=""Handler .ashx?req=getdbf&dbservice=fbo&dbkeyfilter=(company_id+%3d+"{{company_id}}")&dbtable=compani
es&dbfield=logo_data&src={{logo_file}}&inl=1" />

Parameter Description Value

req Request Type getdbf

dbservice Datasource Key <datasource key>

dbkeyfilter Row filter that will return 1 row | The SQL clause escaped for URL
dbtable Name of the database table <table name>

dbfield Name of the database field <field name>

src The file name <name of the file>

inl 1 for inline, O for attachment 1

using
using

publi
{
///
/77
//7/
///
///
/77
///
pub
{
s
u

{

netQUARRY

How to programmatically add a file using a mapper
The following code example adds a static method to a TypedMapper based on the document mapper defined
above:

System.Web;
System.10;

c class Document : FBO.Data.Generated.document<Document>

<summary>

Adds a new record and attaches the document

</summary>

<param name="appCxt'>The application context object</param>

<param name="relatedID"'>The primary key of the related item.</param>

<param name="fileName">The full path to the file</param>

<returns>The ID of the new record, as a string.</returns>

lic static string AddNew(lAppContext appCxt, Guid? relatedID, string FfileName)

tring documentID = null;
sing (Document doc = Document.OpenNew(appCxt))

//--- This has to be done in 4 steps:

//--- Step 1: Copy the file to the appropriate location. The mapper expects the file to be in the folder
//--- specified by the Folder property on the field. By default, we"re using "UserFiles®" as the folder as
//--- it"s created during the install.

//--- Step 2: Copy the file to the location, and set the name of the file to ONLY the name,

//-—- not the full path. (Looks better and the path has no meaning once the file is stored in the database.
//--- Step 3: Add the related document record.

//--- Step 4: Delete the document

string filePath = HttpContext.Current.Server._.MapPath(
doc.Fields.document_nm.Properties.GetStringValue(''Folder", "UserFiles'));

string tempFileName = Path.Combine(filePath, Path.GetFileName(fileName));
it (IFile._Exists(tempFileName))
File.Copy(fileName, tempFileName, true);

doc.document_nm = Path.GetFileName(fileName);
doc.related_id = relatedID;

doc.Save();

documentID = doc.document_id.ToString();

//--- Step 4: (optional) delete the temporary file
File.Delete(tempFileName);

doc.Close();

}

}
}

return documentliD;

%etQUARRY

Showing icons in the list
You can show icons in a list using a Picklist set on a column that has images as its text.

Example:

Account Opportunities My Opporiunities

O - Subject Priority
[v]

1 Elf Point Pre-cammercial Thinning Mediurm

[] 3% | Blanchard Recreation Area Clean ¥al High

¥ Refugin Courty Bark Stabilization - EWE

] Riparian Fisheries Consultation Services

For this example, the mapper has a field priority_id (int) which has a Picklist with the values High,
Medium, Low. To add an image column linked to the priority_id follow these steps:

AW e

Copy the field and rename it. (priority_icon)

Set the field’s type to Icon

Set the field’s AliasName to priority_id

Create a new picklist with the following values:

1 —images/1x1.gif

2 —images/1x1.gif

3 — apps/<your appid>/images/high.png (16x16 image)

PickList Items - {3 Rows)

Mame Alternate Key Text Alternate Key Int | =
b limages/ix1.gif {images/1x1.gif
images)1x1.aif images)1x1.qif

apps/fbofimagesfhigh.png | apps/fbofimages)star_red.gif
*

Set the following attributes on the list:

Cache, KeySameAsText, LimitTolist, StoreAltint (1048645)
Set the Picklist on the new field to the new Picklist.

Set the field’s width to 3

Set the field’s Caption to a single hyphen (-).

%etQUARRY

Using Built In Auditing

You can set up a mapper to be audited where all the field changes of a mapper will be recorded in a

platform table. There are two types of audit. A very rich “Readable Audit” and a much simpler “Simple

Audit”. We recommend that you always use the Readable Audit process. The auditing process is

provided by platform extensions. The display of audit information is the responsibility of the developer.

Auditing Changes with Readable Audit

On a mapper you want to audit, add the ReadableAudit.Audit extension. This is a platform extension.

The audit extension has some properties with which you can customize the behavior of the auditing

process.

Audit Extension property

Description

AtomicFields

A semi-colon separated list of keys for fields whose values should be
diffed in their entirety instead of character by character.

AuditPrefix

Mapper expression to be resolved and used as change description prefix
styled using the audpre CSS class. You could use this property if you are
auditing different mappers “as the same mapper” using the
MapperKeyOverride property. You could then provide an indication of
the exact source of audit record.

AuditSeparate

A true or false field that defines whether each changed field should be
logged as a separate audit record. By default the audit process creates
one field per insert/update/delete, regardless of how many fields were
modified.

CustomAudit

A mapper expression evaluated against the audited mapper and written
to the xot_audit_readable.custom_audit column.

MapperKeyOverride

Specified the mapper key to write to the
xot_audit_readable.mapper_key column when auditing this mapper.
This is used when you want a mapper to be audited as if it were from
another mapper. Use if the mapper you are auditing is, for example,
contains a subset of data from a main object mapper. If you present
modifications based on the main object type, then this can ensure all
your data changes are related to the correct object.

netQUARRY

Audit Extension property

Description

ParentField

The field in the mapper being audited that stores the foreign key to that
record’s parent record. In auditing, the audit record is associated (rel_id)
with the primary key of the mapper that has changed. However, if the
mapper has a foreign key field to a parent mapper, you can specify what
that field is and then the value of that foreign key field is also associated
with that audit record. Therefore you can “roll up” the audit history to
the parent mapper of the audited mapper.

E.g., A customer has a note. | you change a note, the note is audited
and the audit rel_id value is the note_id. You can set the ParentField
property to customer_id and the value of that field is also recorded with
the audit record. Then when showing audits for a customer, the note
audit will also appear.

PKOverride

Specifies the field, in the mapper being audited, to use instead of the PK
field when obtaining a value for the xot_audit_readable.rel_id column.

Example of properties usage
This example shows the output of the audit process where AuditSeparate is false. Location zip is

specified in the AtomicFields list.

Audit History (Filtered on Parent) [1 - 10 of 10]

@ s LRI ore YL Fiers oo

F Changed Items Change Description Change Date™ User
|

» 7 [] Panels Replaced Detail Fanels Replaced Detail: beftid - 1 9/3/2009 9:50:41 AM rabbey@netquarry
6 [] ranels Replaced Detail Panels Replaced Detail: Left Mearside schanel 9/3/2009 9:49:30 AM rshbey@netquarry
5 [Panels Replaced Detail Panels Replaced Detail: Left Mearside panel 9/3/2009 9:49:00 AM rabbey@netquarry
4 [] Description, Region Description: 2007 BMW 3-Series 2dr Cpe 3351 RWD (Grey Pousson); Region: Morth West 9/3/2009 9:45:00 AM rabbey@netquarry)
3 [] Description, Location Zip, Region Description: 2007 BMW 3-Series 2dr Cpe 3351 RWD (Grey Poupon); Location Zip: S555495902; Region: Hesh-westMorth West 9/3/2009 9:47:05 AM rshbey@netquarry
2 [Tires Front, Transmission Tires Front: Worse than 60%; Transmission: Autornatic 9/3/2009 9:45:25 AM rabbey@netquarry
1 [colar Color: Black 9/3/2009 9:44:30 AM rabbey@netguarry

Example Row Description

1 New value added to a picklist field

2 New value entered into text field and modified value of picklist field

3 Description modified in text field (word added), Location Zip text field modified (but

field is marked as “atomic” in AtomicFields property.
4 Description modified in text field (character changed in word)
5 New value entered into Panels Replaced text field

netQUARRY

Example Row Description
6 Modified character in Panels Replaced text field
7 Deleted value from Panels Replace text field

This example is showing when AuditSeparate is set to true

Audit History (Filtered on Parent) [1 - 12 of 12] (XD (E1C(TZHD © &

O Changed Items Change Description Change Date™ User
]
B C [] Panels Replaced Detail field changed 9/3/2009 10:09:25 AM rabbey@netquarry
[] \mamage Description anather field changed 9/3/2009 10:09:25 AM rabbey@netquarry

By default, no fields are automatically audited. To audit a field you must set the Audit field attribute.

When an insert or delete occurs, all of the audit fields are audited. During an update, a field is audited
only when the field is dirty and when the old value and new value do not equal.

Displaying Readable Audit Records

The platform readable audit is stored in the table xot_audit_readable. If you want to display audit
information, you create a mapper from this table. There is another platform database object,
xov_audit_readable_rollup. With this view you can create a mapper where you display rolled up audit
information.

After you create the mapper from the xot_audit_readable, or xov_audit_readable_rollup, There are a
couple of necessary meta data changes to the audit mapper fields.

Set the change_text field to HTML cell type and with the HTMLContent attribute. Since you typically
display the audit information in a subform list, then set the AllowListWrap FieldBehaviorAttribute.

When you set up the subform to display audit information, whether you are showing regular audit, or
audit_rollup, then your ViewKey property will be set to rel_id

Auditing Changes with Simple Audit

On a mapper you want to audit, add the SimpleAudit.Audit extension. This is a platform extension.

There are some significant limitations in using SimpleAudit. There are no customizable properties to
modify behavior and only updates are audited.

During an update, the SimpleAudit extension, interrogates the mapper to determine which fields are
marked to be audited and which of those fields are dirty.

A record is then inserted into the xot_audit_simple table specifying the old and new value in separate
columns.

%etQUARRY

Displaying Simple Audit Records
The platform simple audit is stored in the table xot_audit_simple. If you want to display audit
information, you create a mapper from this table.

When you set up the subform to display audit information, your ViewKey property will be set to rel_id.

netQUARRY

Using Console Pages

Console Pages provide the ability to display multi-faceted information about an object on a single page.
The console page has the idea of a parent object with related child objects. Therefore, this concept is
similar to the main page/subform relationships on standard list/detail pages.

All console pages must have a Main slot specified. The Main slot object doesn’t necessarily have to be a
parent of the child elements for the console page to be rendered correctly, but for this documentation,
we'll consider the situation where the Main Slot is related to the data in the child elements.

Page Properties
The properties you can specify at the main page level are limited.

Console Template Description
Property

TemplateAttributes | These affect the behavior of the console template.

Attribute Description

NoElementMove | The console page elements cannot be moved around by the user.

ShowToolbar The main toolbar buttons should be displayed on the console page.

Columns Here you can specify the number of columns in the console page matrix of Main
element and ConsolePage page elements.

ColumnWidths Here you can specify a fixed width of one, or more columns in the console page
matrix. If there are two columns, and you don’t specify a width, the page
elements a sized at 50% of the page width. You can only specify the widths of the
left most columns. E.g., you have two columns and set the width to 100px. The
first column will be 100px wide, the second column will size based on the size of
the screen.

PageCommands You can set the page to have page commands, and these commands apply to the
object in the Main slot. The commands will display on the Toolbar as either
Actions, Links, or custom toolbar buttons.

Caption The caption to display on the page. Here you can add field references to the data
associated with the main page element so that we can get contextual information
about the object in the title of the page.

netQUARRY

Page Element Slot Descriptions

Slot Description

Main The one and only main parent object for the console page. In the traditional
scenario, this will use a MiniDetail component. It is from this single detail record
that you specify the relationship to the child elements. In cases where there is no
relationship between parent and child elements, you can specify any of the
standard console page components.

Side Optionally specify the one and only control to display in the side slot. This is
typically going to be a navigator page using the NavBar component. In the
properties of the NavBar page element component, set the Navigator property to
the name of the navigator object you want to display on the side slot.

ConsolePage Here you can specify as many ConsolePage elements as you need to present the
data. There is no physical limit to the number of ConsolePage elements you can
specify on the console page, other than you should think about the use of real
estate and readability for the user.

The types of console page that can be used

Component | Description

MiniDetail A detail view of data that requires an
html fragment to layout the fields.

MinilList A list view of the data

MiniNav A set of navigation items from a
navigator object

GMap A google map object displaying
locations from a set of latitudes and
longitudes.

Graph A google graph object displaying data
into a chart format.

Each of the page elements has a set of properties specific to the component type. In some cases the
property is common to all page types. Below is a description of the properties used by each component.

MiniDetail Properties

Property Description

EnableRule A JavaScript expression that will contain field references to data on the main
console page element. This expression evaluates to true or false to show or
hide the ConsolePage element. Typically you would only use this property for
child ConsolePage elements of the console page.

netQUARRY

Property Description

PaneAttributes The attributes that modify the behavior of the console page element.
Attribute Description
FixedAtBottom The pane should be positioned at the bottom of the console and fixed in

place. If there is more than one pane specified with this attributes, then
the panes will be fixed at the bottom in order specified by the order
property of the page element. Additionally, when specified as fixed at
bottom, the page element spans the width of the page.

FixedAtTop The pane should be positioned at the top of the console and fixed in
place. If there is more than one pane specified with this attributes, then
the panes will be fixed at the top in order specified by the order property
of the page element. Additionally, when specified as fixed at bottom,
the page element spans the width of the page.

Note that when FixedAtTop, the page elements are placed above the
position of the main page element.

FixedHeight The pane should have a fixed height, rather than resizing per the pane
contents. The specific height is set in the MaxHeight property.
HideHeader Determines whether the console pane header should be hidden, or not.

When hidden, the console pane element is displayed, automatically
expanded. The Ul element that provides expand and collapse capability
is not available. Neither are any page element links.

NoExpandCollapse | Specifies whether the user can expand or collapse a page element.

Filter Specifies any additional filtering to be applied to the mapper on this element.
Mapper The mapper used to retrieve data for the element.
View Override the view for the mapper if necessary

ParentViewKeySource

If this MiniDetail element is on the Main slot, then you wouldn’t specify the
ParentViewKeySource. As a ConsolPage element, it specifies a different parent
view key from the primary key of the main detail element.

ViewKey

If this MiniDetail element is on the Main slot, then you wouldn’t specify the
ViewKey . As a ConsolePage element, it specifies the foreign key on the child
element to the Parents primary key (or ParentViewKeySource).

Column

Defines which column of the console pane that this page element is located.
The column index is zero based.

PaneVisibility

Controls initial visibility of the page element.

Attribute Description

DefaultCollapsed The pane is collapsed by default when the page is initially opened.

NoDataCollapsed If there is no data to display in the console pane, you would see a
message “No Data to display”, or the text specified in the NoRecordHtml
property. When set, the pane will be collapsed closed when the page is
initially opened if there is no data.

NoDataHidden When set, the pane will be hidden when the page is initially opened if
there is no data.

Template

Specify the name of a template that contains a fragment of html that contains
layout information of the detail. This property is required for MiniDetail page
elements.

LinkKey

Used with the LinkMOP property. If the page element is displaying a header,
then the caption of the header will be a link to the page specified in the
LinkMOP property. Specify the LinkKey to determine the pk for the navigation.

LinkMOP

Used with the LinkMOP property. If the page element is displaying a header,
then the caption of the header will be a link to the page specified in the
LinkMOP property. Specify the LinkKey to determine the pk for the navigation.

%etQUARRY

Property Description

NoRecordHtml If there are no records found for this page element, then by default the string
“There are no records to display” is displayed. You can set an alternative string
to display with this property.

netQUARRY

MiniList Properties

Property

Description

EnableRule

A JavaScript expression that will contain field references to data on the main
console page element. This expression evaluates to true or false to show or
hide the ConsolePage element. Typically you would only use this property for
child ConsolePage elements of the console page.

PaneAttributes

The attributes that modify the behavior of the console page element.

Attribute Description

FixedAtBottom The pane should be positioned at the bottom of the console and fixed in
place. If there is more than one pane specified with this attributes, then
the panes will be fixed at the bottom in order specified by the order
property of the page element. Additionally, when specified as fixed at
bottom, the page element spans the width of the page.

FixedAtTop The pane should be positioned at the top of the console and fixed in
place. If there is more than one pane specified with this attributes, then
the panes will be fixed at the top in order specified by the order property
of the page element. Additionally, when specified as fixed at bottom,
the page element spans the width of the page.

Note that when FixedAtTop, the page elements are placed above the

position of the main page element.

FixedHeight The pane should have a fixed height, rather than resizing per the pane

contents. The specific height is set in the MaxHeight property.

HideHeader Determines whether the console pane header should be hidden, or not.
When hidden, the console pane element is displayed, automatically
expanded. The Ul element that provides expand and collapse capability

is not available. Neither are any page element links.

NoExpandCollapse | Specifies whether the user can expand or collapse a page element.

Filter Specifies any additional filtering to be applied to the mapper on this element.
Sort Specifies a custom sort on the elements mapper in addition to the current sort.
Mapper The mapper used to retrieve data for the element.

View Override the view for the mapper if necessary

ParentViewKeySource

If this MiniDetail element is on the Main slot, then you wouldn’t specify the
ParentViewKeySource. As a ConsolPage element, it specifies a different parent
view key from the primary key of the main detail element.

ViewKey If this MiniDetail element is on the Main slot, then you wouldn’t specify the
ViewKey . As a ConsolePage element, it specifies the foreign key on the child
element to the Parents primary key (or ParentViewKeySource).

Column Defines which column of the console pane that this page element is located.
The column index is zero based.

PaneVisibility Controls initial visibility of the page element.

Attribute Description

DefaultCollapsed The pane is collapsed by default when the page is initially opened.

NoDataCollapsed If there is no data to display in the console pane, you would see a
message “No Data to display”, or the text specified in the NoRecordHtml
property. When set, the pane will be collapsed closed when the page is
initially opened if there is no data.

NoDataHidden When set, the pane will be hidden when the page is initially opened if
there is no data.

RowsPerPage Specifies the number of rows to be displayed in the MiniList. It’s better to have

a fewer number of rows than larger.

%etQUARRY

Property Description

LinkKey Used with the LinkMOP property. If the page element is displaying a header,
then the caption of the header will be a link to the page specified in the
LinkMOP property. Specify the LinkKey to determine the pk for the navigation.

LinkMOP Used with the LinkMOP property. If the page element is displaying a header,
then the caption of the header will be a link to the page specified in the
LinkMOP property. Specify the LinkKey to determine the pk for the navigation.

NewTarget You can specify a mop with which you can navigate to a page that creates a new
item on the MinilList. If this property is specified, the Ul has a “>> New” link
added to the element header.

NoRecordHtml If there are no records found for this page element, then by default the string

“There are no records to display” is displayed. You can set an alternative string
to display with this property.

netQUARRY

MiniNav Properties

Property

Description

EnableRule

A JavaScript expression that will contain field references to data on the main
console page element. This expression evaluates to true or false to show or
hide the ConsolePage element. Typically you would only use this property for
child ConsolePage elements of the console page.

PaneAttributes

The attributes that modify the behavior of the console page element.

Attribute Description

FixedAtBottom The pane should be positioned at the bottom of the console and fixed in
place. If there is more than one pane specified with this attributes, then
the panes will be fixed at the bottom in order specified by the order
property of the page element. Additionally, when specified as fixed at
bottom, the page element spans the width of the page.

FixedAtTop The pane should be positioned at the top of the console and fixed in
place. If there is more than one pane specified with this attributes, then
the panes will be fixed at the top in order specified by the order property
of the page element. Additionally, when specified as fixed at bottom,
the page element spans the width of the page.

Note that when FixedAtTop, the page elements are placed above the
position of the main page element.

FixedHeight The pane should have a fixed height, rather than resizing per the pane
contents. The specific height is set in the MaxHeight property.
HideHeader Determines whether the console pane header should be hidden, or not.

When hidden, the console pane element is displayed, automatically
expanded. The Ul element that provides expand and collapse capability
is not available. Neither are any page element links.

NoExpandCollapse | Specifies whether the user can expand or collapse a page element.

Column

Defines which column of the console pane that this page element is located.
The column index is zero based.

PaneVisibility

Controls initial visibility of the page element.

Attribute Description

DefaultCollapsed The pane is collapsed by default when the page is initially opened.

NoDataCollapsed If there is no data to display in the console pane, you would see a
message “No Data to display”, or the text specified in the NoRecordHtml
property. When set, the pane will be collapsed closed when the page is
initially opened if there is no data.

NoDataHidden When set, the pane will be hidden when the page is initially opened if
there is no data.

LinkKey

Used with the LinkMOP property. If the page element is displaying a header,
then the caption of the header will be a link to the page specified in the
LinkMOP property. Specify the LinkKey to determine the pk for the navigation.

LinkMOP

Used with the LinkMOP property. If the page element is displaying a header,
then the caption of the header will be a link to the page specified in the
LinkMOP property. Specify the LinkKey to determine the pk for the navigation.

Navigator

This is where you specify the navigator to display in the console pane. The
navigator links automatically pick up the parent key information from the main
object, so they navigate to the correct location with the appropriate parent
filtering.

netQUARRY

GMap Properties

The GMap handling has some special rules. The mapper that provides the location information, must
have two fields that provide both latitude and longitude data. The GMap is expecting to find fields call
“latitude” and “longitude” in the underlying mapper. If the fields are not called this, then you can go to
the mapper object, and the User Defined Text subform. You can add two text items Latitude and
Longitude and then for each text item, set the value to a field reference in the mapper that represents
the latitude and longitude data.

Property Description

EnableRule A JavaScript expression that will contain field references to data on the main
console page element. This expression evaluates to true or false to show or
hide the ConsolePage element. Typically you would only use this property for
child ConsolePage elements of the console page.

PaneAttributes The attributes that modify the behavior of the console page element.
Attribute Description
FixedAtBottom The pane should be positioned at the bottom of the console and fixed in

place. If there is more than one pane specified with this attributes, then
the panes will be fixed at the bottom in order specified by the order
property of the page element. Additionally, when specified as fixed at
bottom, the page element spans the width of the page.

FixedAtTop The pane should be positioned at the top of the console and fixed in
place. If there is more than one pane specified with this attributes, then
the panes will be fixed at the top in order specified by the order property
of the page element. Additionally, when specified as fixed at bottom,
the page element spans the width of the page.

Note that when FixedAtTop, the page elements are placed above the
position of the main page element.

FixedHeight The pane should have a fixed height, rather than resizing per the pane
contents. The specific height is set in the MaxHeight property.
HideHeader Determines whether the console pane header should be hidden, or not.

When hidden, the console pane element is displayed, automatically
expanded. The Ul element that provides expand and collapse capability
is not available. Neither are any page element links.

NoExpandCollapse | Specifies whether the user can expand or collapse a page element.

Filter Specifies any additional filtering to be applied to the mapper on this element.
Sort Specifies a custom sort on the elements mapper in addition to the current sort.
Mapper The mapper used to retrieve data for the element.

View Override the view for the mapper if necessary

ParentViewKeySource | If this MiniDetail element is on the Main slot, then you wouldn’t specify the
ParentViewKeySource. As a ConsolPage element, it specifies a different parent
view key from the primary key of the main detail element.

ViewKey If this MiniDetail element is on the Main slot, then you wouldn’t specify the
ViewKey . As a ConsolePage element, it specifies the foreign key on the child
element to the Parents primary key (or ParentViewKeySource).

Column Defines which column of the console pane that this page element is located.
The column index is zero based.

netQUARRY

Property Description
PaneVisibility Controls initial visibility of the page element.
Attribute Description
DefaultCollapsed The pane is collapsed by default when the page is initially opened.
NoDataCollapsed If there is no data to display in the console pane, you would see a
message “No Data to display”, or the text specified in the NoRecordHtml
property. When set, the pane will be collapsed closed when the page is
initially opened if there is no data.
NoDataHidden When set, the pane will be hidden when the page is initially opened if
there is no data.
LinkKey Used with the LinkMOP property. If the page element is displaying a header,
then the caption of the header will be a link to the page specified in the
LinkMOP property. Specify the LinkKey to determine the pk for the navigation.
LinkMOP Used with the LinkMOP property. If the page element is displaying a header,

then the caption of the header will be a link to the page specified in the
LinkMOP property. Specify the LinkKey to determine the pk for the navigation.

DetailTarget

The map displays the location defined by the record. If you drill down into that
location, you are taken to the MOP specified by this property.

ZoomLlevel

The default zoom level for the map at which to display the locations. The zoom
level range is between 1 and 18, with 18 being the most zoomed in.

Graph Properties

netQUARRY

Property

Description

EnableRule

A JavaScript expression that will contain field references to data on the main
console page element. This expression evaluates to true or false to show or
hide the ConsolePage element. Typically you would only use this property for
child ConsolePage elements of the console page.

PaneAttributes

The attributes that modify the behavior of the console page element.

Attribute Description

FixedAtBottom The pane should be positioned at the bottom of the console and fixed in
place. If there is more than one pane specified with this attributes, then
the panes will be fixed at the bottom in order specified by the order
property of the page element. Additionally, when specified as fixed at
bottom, the page element spans the width of the page.

FixedAtTop The pane should be positioned at the top of the console and fixed in
place. If there is more than one pane specified with this attributes, then
the panes will be fixed at the top in order specified by the order property
of the page element. Additionally, when specified as fixed at bottom,
the page element spans the width of the page.

Note that when FixedAtTop, the page elements are placed above the

position of the main page element.

FixedHeight The pane should have a fixed height, rather than resizing per the pane

contents. The specific height is set in the MaxHeight property.

HideHeader Determines whether the console pane header should be hidden, or not.
When hidden, the console pane element is displayed, automatically
expanded. The Ul element that provides expand and collapse capability

is not available. Neither are any page element links.

NoExpandCollapse | Specifies whether the user can expand or collapse a page element.

Filter Specifies any additional filtering to be applied to the mapper on this element.
Sort Specifies a custom sort on the elements mapper in addition to the current sort.
Mapper The mapper used to retrieve data for the element.

View Override the view for the mapper if necessary

ParentViewKeySource

If this MiniDetail element is on the Main slot, then you wouldn’t specify the
ParentViewKeySource. As a ConsolPage element, it specifies a different parent
view key from the primary key of the main detail element.

ViewKey If this MiniDetail element is on the Main slot, then you wouldn’t specify the
ViewKey . As a ConsolePage element, it specifies the foreign key on the child
element to the Parents primary key (or ParentViewKeySource).

Column Defines which column of the console pane that this page element is located.
The column index is zero based.

PaneVisibility Controls initial visibility of the page element.

Attribute Description

DefaultCollapsed The pane is collapsed by default when the page is initially opened.

NoDataCollapsed If there is no data to display in the console pane, you would see a
message “No Data to display”, or the text specified in the NoRecordHtml
property. When set, the pane will be collapsed closed when the page is
initially opened if there is no data.

NoDataHidden When set, the pane will be hidden when the page is initially opened if
there is no data.

LinkKey Used with the LinkMOP property. If the page element is displaying a header,

then the caption of the header will be a link to the page specified in the
LinkMOP property. Specify the LinkKey to determine the pk for the navigation.

netQUARRY

Property

Description

LinkMOP

Used with the LinkMOP property. If the page element is displaying a header,
then the caption of the header will be a link to the page specified in the
LinkMOP property. Specify the LinkKey to determine the pk for the navigation.

NoRecordHtml

If there are no records found for this page element, then by default the string
“There are no records to display” is displayed. You can set an alternative string
to display with this property.

BarWidth

Specify the width of bars in a vertical or horizontal bar chart. The format of the

data follows the google chart specification.
http://code.google.com/apis/chart/docs/gallery/bar charts.html#chbh

ChartSize

Specify the dimensions of the chart. If not specified, the chart is sized to

200x125 (px). The size is specified as a string in the format “widthxheight”
http://code.google.com/apis/chart/docs/chart params.html#gcharts chs

ChartType

The type of chart required. Only a small subset of the available charts are

available. We support Line, Pie, 3D Pie, Vertical Bar, Horizontal Bar
http://code.google.com/apis/chart/docs/chart params.html#gcharts cht

Colors

The color values for the chart series data.
http://code.google.com/apis/chart/docs/chart params.html#gcharts series color
Each entry is a string in RGB format
http://code.google.com/apis/chart/docs/chart params.html#tgcharts rgb

If the chart displays a legend, then the legend also matches the color.

FormatY

Specifies the number format for the y-axis data. The format uses the standard
.Net number format specifications. Internally, the platform converts this data
into the appropriate Google chart label format specification combined with the
ScaleY format to generate a Y-axis labels

Gridlines

Specifies whether gridlines should be displayed on the chart. The options are
true and false. The platform generates a Google chart compliant format string

for the chg parameter with the following settings, “20,20,1,5”
http://code.google.com/apis/chart/docs/chart _params.html#gcharts grid lines

Legend

Specifies whether a legend should be displayed on the chart. You specify a
semi-colon delimited list of legend text items. The platform converts this list

into a Google chart compliant pipe separated list .
http://code.google.com/apis/chart/docs/chart params.html#gcharts legend

ScaleY

Specifies the scale of the y-axis data. The value expects an integer value and
has a default value of 1. Internally, the platform converts this data into the
appropriate Google chart label format specification combined with the FormatY
format to generate a Y-axis labels

CategoryAxis

Specifies which field in the mapper provides the data specifying the chart
categories. This field is required for a chart specification.

ValueAxis

Specifies which field(s) in the mapper provides the data specifying the chart
values. At least one field is required to generate a valid chart. You can specify
multiple value fields in a semi-colon separated list. Internally, the values are
converted into the SimpleEncoding mechanism, limiting the data to one of 61
encoding values.

http://code.google.com/apis/chart/docs/data formats.html#simple

Simple formatting is used to minimize the length of the posted querystring for

large datasets.

ValueRoundTo

Specifies the rounding applied to value data. The default value is 1

	Training - 300 - Metadata Advanced
	Training - 301 - Field References
	Training - 302 - Embedded Functions
	Training - 303 - Picklists
	Training - 304 - Templates
	Training - 305 - Named Filters
	Training - 306 - Flavors
	Training - 307 - Using Wizards
	Training - 308 - Session Properties
	Training - 309 - Mappers Using Stored Procedures
	Training - 310 - Custom Properties
	Training - 311 - BLOB Data
	Training - 312 - List Icons
	Training - 313 - Built In Auditing
	Training - 314 - Using Console Pages

