NetQuarry

The Enterprise Application Software Development Platform
for Microsoft.NET

IssueTrak Tutorial — 3 — Extensions and Tasks

Table of Contents

Table of CoNtENtS......iiuiii i 2
Purpose of this document ..o, 5
Generated ObJECESivviiii i 5
TYPEA MAPPELS ...ttt ettt es e e enens 6
PICkliSt ENUMEIAtIONSo.oveeiieeeee e 8
SESSION PrOPEITIES ...ttt ettt eae et eaeeeaeennes 9
Defining SeSSiON PropPertiescceueuuiieiiiieiiieeee e e e e e e eeesnss e e e e e e e e e e e e eeeeenns 9
Declaring Preference Inheritance Hierarchyccoveviiiiiiiiiiic i eevni e 10
Generating the Objects from Metadata..............c.ccooooiiiiieci, 12
When to Generate Code?cuuiiiiiiiiiiiiiiiin e ran s 12
Steps to Successful Code GENErationc..ccivvuiiiiuiieiiii i e 13
What Might Cause Code Generation to Fail?cceuueiiiiiiiiiii e 14
NAMESPACES ...ttt ettt ettt ettt eae e a e e te e te et e easeaeennas 15
The ComMMON DLLcuiiiiiicie e e e 16
SEAITUP.CS ...ttt a et st be ettt sa e e s e b e teere et 16
Generated SUD FOIEN ..o 16
INAIVIAUALLCS ...ttt 17
SESSION.CS ..ottt ettt ettt ettt te e b et se b e b e st et e b et ese s e b ne et e benseneesensens 18
EXEENSIONBASE.CS ...ttt 20
Attaching the Application EXtENSIONcooviieieeeeeeeeeeeeeeeeeee e, 21
Mapper EXEENSIONSvviiiiiiiiiiiiir e 22
Individual EXEENSIONooveieieeeeeeeeee e 23
Creating the EXLENSIONcceivieiiee e eeeeceeie s e e e e e e s e e e e e e r e e e e e e e e e rnnnnnnns 23
Register the Extension in the StUdIOcceviieiiiiiin e 25
Attach the Extension to the Individual Mapper.....ccccooiiiiiiii e e 26
Override and Handle EVENESc..iiiuiiiiii et r s n s ea e e 27
EXtension in ACHIONccuiiiiiii e 31
Debugging the EXENSIONccuuiiiiiiiii e e na e 32
Adding Real FUNCHONAIILYoeiiieeeeeeee e e e 33
ISSUE EXEENSION ...ttt 37
Create a RowBeforeInsert Handler........c.oviiveiiiiiiiiiiic v en e 38
Create a MapperBeforeLayout Handlercooveuiiiiiiiiiii s e 39
Create a RowBeforeUpdate Handlerccuuiiiiiiiiiiiciiiiin i seerns e 40
Create a RowAfterInsert Handleroevveiviiiiiiiiii e erre e 41
Create a RowAfterUpdate Handlercoooeuuiiiiiiiiii e 42
Create the Email Notification Handler...........ccooiviiiiiiiiiiiiinceeeverv v 43
Issue Extension as a Typed Mapper EXtension..............cccoooveveeeeeceecieceeeeeeeena 46
Create a RowBeforeInsert Handler........cooivivviiiiiiiiiiiiiceiiisserei v 48
Create a MapperBeforeLayout Handlerc.ucvviviiiiiiiiiiiiin e 49
Create a RowBeforeUpdate Handler ..o 50
Create a RowAfterInsert Handlerooiviiviiiiiiiiiiiccriiic e eres s rn e 51
Create a RowAfterUpdate Handlercoooevuiiiiiiiiii e 52
Create the Email Notification Handler............cooviviiiiiiiiiiiiiiieeern v 53
Page EXLENSIONS....cuiiiiiiiiiiiie e 55
Issue Console Page EXTENSIONocoovouiovieeeceeeeeeeeeeeeeeeeeee e 55

NetQuarry - Issue Track Tutorial - Part 3.docx Page 2 of 130

Create a ConsolePaneBeforeLayout Handlercocoeiiiiiiiiiiiiic e, 56

Create a ConsolePaneBeforeRequery Handler............vvveiiiiiiviiiicinie e, 58
Create a ConsolePaneAfterRequery Handlerccucevviiiviiiiieciiiin e seeenee e eeennn 59
Issue Wizard Page EXLENSION...........c.oovoeouieeeeeeceeeeeeeeeee e 60
Create a WizardBeforePagelLoad Handlerccuueviiiiiiiiii i eeniee e 61
Create a WizardNext HandIer........covviviiiiiiiiiin s r s an e enas 62
Create a WizardPrevious Handlercooveuuiiiiiiiiei e erne e 64
Create a WizardCancel Handler.........c.uviiiiiiiiniiiiiineir e e e 65
Manipulating Sets of Dataccoevieiiiiiiii e, 66
Making Bulk Updates t0 ISSUEScooioiiieeeeeeeeeeeeeeeeeeeeeeee e, 66
Creating the ACtION MENUciiiiiiiiciiic e raaas 67
Handling the Action Menu Command eVent.........ccevviiiiieiiii e e 70
Create the Issue Bulk Modify WiIzard..........cceeiiiiiiiiiinieei e ene e 71
Fix the Bulk Modify Wizard Ul.........cooiiiiiiiiiiiiiinc e s s s s s sennn e 74
Make Bulk Modify Wizard Co-Exist with Other Wizardsccoceiviiiiiiiiiiveiiinnneens 76
Performing the Bulk MOIfycovvvveiiiiiiiiiiieiries s serirs e s s e e e 80
Scheduled Taskscoveiiiiiii 83
Create the Open Issues Due in 2 Day TasKccooooieiieoieeeieieeeeceeeeeeee 84
Register the task in the StUdIO.........uiir i e 86
Define the Task in the StUdIOcevveeiii e 87
Create a Mapper for Identifying who to Notifycoviiiiiiiiiiiii e, 88
Create the Notification Templateccoommmmiii e 89
Declare More Typed MapPEISiveruiiiiniiiiriseetie e s s ersn s s s s ess s sesnesesnnssrnnssennnsans 90
Create the Notification Code in the Notification Objectccceeviiiiiiiiiiiiniciiieenn, 91
Use the TaskRunner to test your code.coouumiiiiiiiiiiiiee e e 93
Pref@reNCES .. ivuiiiiiii i 94
Create the Preference EXENSION............oooovieieiieeeeeeeeeeeeeeeee e, 95
Create Company PreferenCeS ..o, 97
Create the Company Preferences Mapper.....ccoicvieerieiiiin i er s er e eenaas 97
Create the Company Preferences Page.......cccceviieiiiiiiiiiiiiiin i seesnss s ernnn e eenns 99
Associate the Preference Page to the Correct Preference hierarchy level. 100
Add the Link to Company PreferenCes......ccoviivieriiiieeiiie e essie e esa e 101
Tweaks to Preference PAgecvivvieriiiiiiiiii e sra e 102
Create the Individual Preferences............cocoovvieiieeieieieeeeeee e 104
Create the Individual “Late Bound” PickliStcccooviiiiiiiiiiiiiiiiicciin v e 104
Create the Individual Preferences Mapperc.ccuveiieeiriieieesiiin e eesnn e eeenns 105
Create the Individual Preferences Page.......ccceviiiiriiiiiiiiiniieiniinn s essnn s eeenns 108
Associate the Preference Page to the Correct Preference hierarchy level. 109
Create UI to Get To Individual Preferences Pageeceeeeiiiiiriiimnniieneeeeeeeeeenns 110
Set the Individual Name.......oiveeviiiiieii e e eeenas 112
USING PrefereNCES........c.oveveeeeeeeeeeeeee e 113
Preference BENaVIOr.........ocuveiiiiiiiici i 113
Using Preferences iN COUE.....cuuuuuiieriieieceeinee e e e e eerenes s e e e e re e eeeeeeenes 114
Using Preferences in Metadataoooevviiiiiiiiii v ern e 116
Asynchronous ReQUESESveuviiiiiiiiiccii e e 120
IMMEAIALE SAVE......o.ooiiiie et 121
Immediate Save on MiNiDetailccvuiiiiiiiiiicc s 121
Immediate Save 0N MINILISt.........oi i e 122
Use Ajax to Lookup and Populate field on Client............ccocooviieiiiiiie 123

NetQuarry - Issue Track Tutorial - Part 3.docx Page 3 of 130

Add JavaScript Function Handlers to FieldS.....c...ccooviiiiiiiiii e, 123

Tell the Application Where the JavaScript File LiVESoccvvviiiiiiniiiiiceiiin e, 124
Create the Component Mapper EXTENSION.......ccceuieiiriieiiicnecie s ene e era e 125
Tweak the component MapPPErc.uciiiiiiiiii e 126
Localizing Notification MeSsageccovevviiiiiiiiiiiciiicrieeee e 127
Localizing Strings in the XTMIssue exXtensionc.ccccceveeveeeveceeececeeeeeenne 128
This Completes the Tutorial.........ccovvviiiiiiiii e 130

NetQuarry - Issue Track Tutorial - Part 3.docx Page 4 of 130

Purpose of this document

This document is a tutorial that explains how to build an application using the NetQuarry
Enterprise Application Platform. The document is split into three parts.

Part 1 — Explains how the NetQuarry Platofmr works and how the platform should be
installed and configured.

Part 2 — Takes you through a set of steps to create a functional bug tracking application.
The steps will be deal entirely with manipulating metadata to create the Issuetrak
application.

Part 3 — Enhances the basic functionality of the IssueTrak application by adding complex
business rules with C# extensions, creating scheduled tasks and debugging.

Generated Objects

The NetQuarry platform can take some of the metadata defined in the studio and
generate strongly typed objects that can be referred to in code. From the mapper
metadata, we generate TypedMapper objects. From standard picklist meta data we
generate typed enumerations. From session properties, we generated typed session
properties. We haven’t mentioned Session Properties as yet as they are mainly for
coding use, rather than metadata use, even though they are defined in metadata.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 5 of 130

Typed Mappers

A typed mapper is a C# generic (template class) for a mapper. A typed mapper is
generated (by the developer, never automatically in the build) for mapper objects that
are NOT marked with the “SkipCodeGeneration” attribute. During the New Page wizard
you might remember this option is displayed on the Choose the Mapper screen and is
defaulted to checked.

Typically you always want a mapper to be code generated as you will then be able to
take advantage of the generated class in the future. However, some mappers you may
not want to generate. For example, mappers that are not based on views or tables in
the database and are dynamically populated in code through a datatable.

To best show what the typed mapper gives is to show a simple code example with
equivalent code for regular mapper and typed mapper.

//--- Creating a basic mapper

//--- Note: This code won't work it's just an example
Guid? individual_id = null;

IAppContext cxt = null;

//--- create a mapper
IMapper individualMapper = NetQuarry.Data.Mapper.CreateAndLoad("individual", cxt, 0);

//--- Get to the value of the individual_id field
string sIndividualID = EAPUtil.ToString(individualMapper.Fields["individual id"].Value);
if (!sIndividualID.IsNullOrEmpty())

{
//--- if there is a value then assign to the local variable
individual_id = new Guid(sIndividuallD);
}
else
{
//--- or set a null value
individual_id = (System.Guid?)null
}

//--- using the mapper as a Typed Mapper

Individual individualTypeMapper = Individual.Attach(individualMapper);
//--- retrieving the value of the individual_id field

individual_id = individualTypeMapper.individual_id;

You can see from the above example that accessing a field that contains a unique
identifier value is much simpler in the typed mapper case than the basic mapper.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 6 of 130

Here is how the typed mapper has created the accessor method for the individual field.

public System.Guid? individual_id
{
get
{
object value = this.Fields.individual_id.Value;
if (value is string)
{

string guidval = value as string;

return (string.IsNullOrEmpty(guidval)) ? (System.Guid?)null : new Guid(guidval);
}

else
return (System.Guid?)value;
}

set { this.Fields.individual_id.Value = value; }

}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 7 of 130

Picklist Enumerations

In a similar way, the platform converts standard picklists from the meta data into an
enumeration. Here's an example of equivalent code with and without using picklist

enums.
//--- this is OK comment but using hard coded value.
//--- force the individual to change password on next login

individualTypeMapper.attr_bits = 4;

//--- little better in explicitly declaring a local variable to the right value
const int forcePasswordChange = 4;
individualTypeMapper.attr_bits = forcePasswordChange;

//--- much better referring to generated attribute
individualTypeMapper.attr_bits =
(int)IssueTrak.Data.Picklists.user attrs.force_password_change;

However there is even a better way. Note in the last way you had to cast the
enumerated value to the typed int value of the underlying field.

We can override the typed mapper definition of the attr_bits property wrapper, typing
the property to the picklist enum type.

/// <summary>Override the default bahavior of the attr_bits field</summary>
public new IssueTrak.Data.Picklists.user attrs attr_bits

{
get { return ((IssueTrak.Data.Picklists.user attrs)base.attr_bits); }

set { base.attr_bits = (int)value; }
}

And with this we can directly assign the typed mapper’s attr_bits to the enumerated
picklist.

//--- perfect
individualTypeMapper.attr_bits = IssueTrak.Data.Picklists.user_attrs.force_password_change;

NetQuarry - Issue Track Tutorial - Part 3.docx Page 8 of 130

Session Properties

Session properties are a way of associating inheritable/hierarchical property values to
users. We typically refer to these property values as Preferences.

These preferences are classed as hierarchical because a user can inherit a base set of
preference values from a company. For example, for people with “Users” role, you
might want them to not see the Home dashboard by default but give them the ability to
choose that they do want to see the dashboard when they login.

Later we'll show you how this could be achieved using preferences, through code.

Defining Session Properties

Creating a session property is very simple. In the Studio, click on the Session Properties

link (near the bottom of the Studio Explorer tree).

Create the following Session Properties

Name Settings Notes
CompanyID Name: CompanyID GenEmbeddedFun attribute will force the code
generator to register the value of this
. . preference as an embedded function. You've
Type: String already come across these when setting the
default value for a user_id field. In the New
Category: Custom Page wizard the Mapper Options screen where
you select fields representing who created a
Attributes: D iconl record. That field is set with a default value of
ributes: Dynamicunly, IfnUserID(). The embedded function generated
GenEmbeddedFunc, for one of these custom preferences has the
SessionPersist name of the preference prefixed with !fn and
suffixed with (). So here we are creating an
embedded function !fnCompanyID(). Also note
that these names ARE case sensitive.
IndividualID Name: IndividualID Create an embedded function called
IfnIndividualID().
Type: String
Category: Custom
Attributes: DynamicOnly,
GenEmbeddedFunc,
SessionPersist
UsersViewDashboard | Name: UsersViewDashboard SessionPersist means that we want the value of

Type: Boolean
Category: Custom

Attributes, DynamicOnly,
SessionPersist

DefaultValue: 0

the preference to be persisted across sessions.

We will use this preference later.

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 9 of 130

Declaring Preference Inheritance Hierarchy

In the studio, you also have to declare the preference hierarchy. This describes how the
preference values are inherited from one level to the next. Typically this preference
hierarchy is equivalent to an organization hierarchy.
Company->Division->Building->People

For the IssueTrak preference inheritance, we are only declaring preference hierarchy of
Company->Individual

In the studio, Go to Modules and create a new module “IssueTrak-preferences”.

Click on the “Preference Levels” link. Just above “Session Properties”

Create a record with the following values

Name Value Notes

Module IssueTrak-preferences

Preference Level company The name of the hierarchical
preference level

Session Instance CreatelnstanceCompany The name of a function that you

Creator will declare in your custom session

class, located in the
IssueTrak.Common.dIl component.

Owner Key Name company_id The name of the primary key field
in a ‘preference mapper’ for this

preference level.

Owner Lookup Sql SELECT company_id FROM company A SQL statement that is used to
WITH(NOLOCK) WHERE {O} lookup the key value of the object

to which the preferences at that
level are attached. The WHERE
clause of the SQL uses the
parameterized string syntax. The
replaceable portion is replaced by a
filter expression that the platform
has created. It is expected that the
filter expression will return a single
row,

Attributes NoParent This is the top level preference in
the hierarchy and has no parent

preference level

NetQuarry - Issue Track Tutorial - Part 3.docx Page 10 of 130

and create an individual preference level

Name

Value

Notes

Module

IssueTrak-preferences

Preference Level

individual

Session Instance
Creator

CreatelnstancelIndividual

Owner Key Name

individual_id

Owner Lookup Sql

SELECT individual_id FROM individual
WITH(NOLOCK) WHERE {0}

Parent Lookup Sql

SELECT company_id FROM individual
WITH(NOLOCK) WHERE
individual_id={0}

Here you specify a SQL expression
that lookups up the ID of the
parent hierarchy from the current
hierarchy. You must always have a
way to get from a current hierarchy
level to the parent hierarchy level,

For now, that is all we will look at for preferences. We will complete the implementation
of preferences as we continue through this document.

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 11 of 130

Generating the Objects from Metadata

To generate the relevant objects is a simple task. If you have installed the NQ Links
shortcuts on the task bar, you can execute a batch file to generate the code files. The
shortcuts are found under “Code”, “"GenCode”, “All”. Or if you want to go there from file
system, the batch files are located in
C:\NetQuarry\Customers\IssueTrak\Database\Metadata

Shortcut/Batch File Generates Notes

All/issues-gen-code.bat all generated files See below for all files generated

Mappers/issues-gen-type_mappers.bat | TypedMappers.cs

Picklists/issues-gen-picklists.bat PicklistEnums.cs
Remote/issues-gen-remote.bat RemoteMappers.cs
Session/issues-gen-session.bat Session.cs

When to Generate Code?

Since the process of generating this code is a manual step by a developer, the question
becomes when should you generate the code? Typically you only need to generate the
code when you need to. When you are adding fields to tables and views and to the
mappers and you want to refer to those field objects in code through the typed mapper
interfaces.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 12 of 130

Steps to Successful Code Generation

Having added fields to your schema and to your meta, you execute the batch file to
generate your new objects. Then you compile your code against the new generated
objects. All being well, the code compiles and tests. You then decide to check in your
changes.

STOP!

Before you check in your regenerated code you must guarantee that you have
successfully generated the code against all the latest metadata. The latest metadata
means your latest and the latest that is currently checked in.

Here are the steps to successful code generation.

1.

2.

Get the latest schema scripts, metadata, and code

Save your metadata (check out your metadata first) and schema changes to
disk.

Diff your metadata and schema changes — resolve differences.

Reload your database and metadata using the database update script. CORRECT
ANY ERRORS BEFORE CONTINUING

Run the batch file to generate all the code objects. CORRECT ANY ERRORS
BEFORE CONTINUING

Recompile your source code against the latest generated objects. CORRECT ANY
COMPILE ERRORS BEFORE CONTINUING

Once you successfully execute all 6 steps, you can then safely check in all of the
changes you‘ve made.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 13 of 130

What Might Cause Code Generation to Fail?

If your code generation process fails it's likely due to the following

Failed At

Reason

Step 4 Database Update

Missing schema updates against updates to views
Incorrect join syntax on views

Missing a GO statement

Step 5 Code Generation

The mapper field metadata no longer matches the current schema
due to changes in the underlying table or view. To solve, check the
schema and correct.

Last time since the code generation was run a mapper was added
that cannot support code generation. To solve mark those
mappers with the SkipCodeGeneration attribute.

Step 6 Compilation

A field is added to the mapper which has a name equivalent to a
reserved word in C#. For example a field might be called “private”.
When the code generator runs it tries to create a field property
called private that is public!

public System.Boolean private

Another situation is where a field on the mapper has exactly the
same name as the mapper. The generated code then creates a
class and a property accessor with the same name, and that is not
allowed.

To solve either of these issues you either change the schema
name, or set a field property on the field to define a different key
name specifically for code generation. Changing the schema name
is the preferable solution.

A data type of a field has been changed in the database. The code
generation process analyzes the data types based on the
underlying schema, rather than the data types defined by the
metadata. — To solve this you MUST change the data type of the
field in the underlying schema.

Flavor modification (typically setting Include flavor) cause the field
to NOT appear in the list of mapper fields when the code is
generated. Code generation occurs with no flavor applied to the
mapper, so fields that have explicit Include flavors will be excluded!
To solve, you either have to work out a way to include the field for
code generation, or change the code that references that field
through typed mapper accessors, to use the general accessor
methods through regular mapper object.

Once you successfully solve all errors and complete all these steps you can check in the
schema scripts, meta data and any code

NetQuarry - Issue Track Tutorial - Part 3.docx Page 14 of 130

Namespaces

The code generation associates the generated objects with specific namespaces. The
TypedMappers and Picklists are associated with the IssueTrak.Data namespace. The
Session object is associated IssueTrak.Common namespace.

Although there are separate namespaces, we host all three sets of objects under one
component dll called the Common DLL. We do this as a way of eliminating complexities
of referencing objects from one namespace to another and vice versa.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 15 of 130

The Common DLL

All applications will have a component called a “Common” dll. This DLL typically
performs the following tasks.

1. Handling Application extension events for modifying authentication and
application load behavior

2. Container for holding references to generated objects from metadata
3. Container for storing implementation code of typed mappers
4. Managing Sessions and Session Properties

A Common dll is provided with this Tutorial that you can refer to, but will also utilize and
build upon.

If you have not already done so, execute the batch file to generate all the code objects.
In Visual Studio, open the project file

C:\NetQuarry\Customers\IssueTrak\Source\Common\IssueTrak.Common.csproj

Startup.cs

Open the startup.cs file. The Startup class is an extension that responds to events fired
by the NetQuarry application object. Currently this has two main functions.

To instantiate a session object for the application once the user is authenticated.

Once the application has completely loaded all of its objects (based on roles/policies),
initialize the session object with data about the user (loading the user’s preferences).

Generated Sub Folder
The folder that stores the generated code objects. You can inspect what is generated,

but you must never manually edit these files and check them in. That is because they
will be overwritten the next time the code is generated and checked in.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 16 of 130

Individual.cs

The implementation of the individual typedmapper object from the typed mapper
generic.

public class Individual : IssueTrak.Data.Generated.individual<Individual>

In this bare bones example, we have overridden two fields that have standard picklists
associated with them to provide fully typed fields.

We will be adding more code and functionality to this class.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 17 of 130

Session.cs

The implementation of the Session object. This object manages the loading of session
properties for the user during initial login and for the loading of preferences to support
hierarchical preferences.

A little earlier we declared in metadata that preferences were a hierarchy of two levels,
Company and Individual. In that metadata we declared two functions to load
preferences for that specific hierarchical level.

CreateInstanceCompany and Createlnstancelndividual. Add these functions to the
session.cs file as shown below

/// <summary>

/// Creates and loads a session for a particular company.

/// </summary>

/// <param name="appCxt">The application context object.</param>

/// <param name="companyID">The company_id value.</param>

/// <returns>A session object with the specified company preferences loaded.</returns>
new public static Session CreateInstanceCompany(IAppContext appCxt, string companyID)
{

//--- create an new instance of the session object

Session session = (Session)NetQuarry.Session.CreateInstance<IssueTrak.Common.Session>(appCxt);
//--- load the preferences for this company
session.LoadPreferences(EAPUtil.ToString(companyID), PreferencelLevel.COMPANY);
session.CompanyID = companyID;

return (session);

}

/// <summary>

/// Creates and loads a session for a particular individual record.

/// Overloads the base user session created from the user_name

/// </summary>

/// <param name="appCxt">The application context object.</param>

/// <param name="individualID">The individualID value.</param>

/// <returns>A session object with the specified individual preferences loaded.</returns>
new public static Session CreatelInstanceIndividual(IAppContext appCxt, string individuallID)
{

//--- determine the company_id for this individual

string companyID = EAPUtil.ToString(appCxt.DataDB.DBLookup("company_id", "individual",
string.Format("individual_id={@}", EAPUtil.AnsiQuote(individualID))));

//--- create a populated session object for the individuals company from the company
preferences

Session session = CreateInstanceCompany(appCxt, companyID);

//--- load the individual's preferences on top of those
session.LoadPreferences(individualID, PreferencelLevel.INDIVIDUAL);

session.IndividualID = individuallD;

return (session);

}

Basically when we want to load the preferences for a company we ask the platform to
load the preferences at the specified level (COMPANY) with the specified key.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 18 of 130

When we want to load the preferences for a user/individual, we first determine the
company associated with that user/individual. Load the preferences for that company
and then load on top of that, the preferences for the user/individual.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 19 of 130

ExtensionBase.cs

Declare some classes that derive from the NetQuarry Platform Extensions. These
provide ways to add extra functionality to the extension objects. In this case, to provide
a simple accessor property to the current IssueTrak.Common.Session object.

Make sure you can compile the IssueTrak.Common.dll project.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 20 of 130

Attaching the Application Extension

The IssueTrak.Common.dll component implements an application extension. We have
to register this extension into the Studio and then associate the extension with the

application.

In the Studio, go to Modules and create a new module called IssueTrak-common,

Then go to the Extensions list under Components and create a new extension with the

following values.

Name Value Notes
Module IssueTrak-common

Name Startup

Component Type Extension

Component Name

IssueTrak.Common.Startup

The name of the component. Itis
IMPERATIVE that you spell this
correctly, exactly matching the name
in the code AND remembering case
sensitivity.

Assembly Name

IssueTrak.Common.dll

The dll that the component is located
in

Assembly Path

C:\NetQuarry\Customers\IssueTrak\So
urce\Common\bin\debug

The path to the locally compiled dll for
developement

Assembly Path Prod

%NQROOT%\Apps\IssueTrak\bin

The path where the component would
be installed in a production
environment

Go to the list of Applications in the Studio.

Click on the Extensions subform under the IssueTrak application.

Add the IssueTrak.Common.Startup extension.

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 21 of 130

Mapper Extensions

About 50% of the coding you will perform will likely be in mapper extensions with the
other 50% will be in the typed mapper objects. In this section we will create a new
mapper extension and hook it into the application and debug some of the events that
are fired.

We will create only a “generic” (where generic means not based on a typed mapper)
extension to provide business rules for Individuals. With the generic extension we are
able to attach the extension to different mappers.

Next, we will create an extension for managing Issues. Initially we will create the
extension as a “generic” extension, but then we will also create another extension for
Issues based on a typed mapper object with exactly the same functionality, so you can
directly compare the difference in code between the two approaches.

We will then add preference support to the application

NetQuarry - Issue Track Tutorial - Part 3.docx Page 22 of 130

Individual Extension
Creating the Extension

Close Visual Studio to close the IssueTrak.Common project. Now navigate one folder up
and open the solution file

C:\NetQuarry\Customers\IssueTrak\Source\IssueTrak.sIn

There’s just one project hosted within it, the IssueTrak.Common project. Right click on
the Solution items and “Add -> New Project”.

Set the following options

Item Value Notes

Project Type Visual C#

Template Class Library

Name Individual

Location C:\NetQuarry\Customers\IssueTrak\Source\Extensions
Click OK

Now change the indentified value as follows
In the solution explorer

Individual -> Issuetrak.Extensions.Individual
Classl.cs -> XIndividual.cs

Add references to...

NetQuarry Core (EAP.Core.dll), NetQuarry Data Binding (EAP.Mapper.dll) browse to
%NQBIN%

e r—

NetQuarry - Issue Track Tutorial - Part 3.docx Page 23 of 130

IssueTrak.Common.dll (browse to
C:\NetQuarry\Customers\IssueTrak\Source\Lib\IssueTrak.Common.dIl)

Drag the project.build file from IssueTrak.Common to IssueTrak.Extensions.Individual
Open the project.build file in the IssueTrak.Extensions.Individual component.
Change the solution value to “IssueTrak.Extensions.Individual”

Drag the AssemblyInfo.cs file from IssueTrak.Common \Properties to
IssueTrak.Extensions.Individual \Properties, overwriting when prompted.

Open the AssemblyInfo.cs file in the IssueTrak.Extensions.Individual\Properties.
Change the Assembly Description to “IssueTrak Individual Extension”

Right click on the IssueTrak.Extensions.Individual project and choose Properties
Change the Assembly Name to IssueTrak.Extensions.Individual

Change the Default Namespace to IssueTrak.Extensions (save and close the Properties)

In the XIndividual.cs file, use this code

using System;

using System.Collections.Generic;
using System.Lingq;

using System.Text;

using NetQuarry;

using NetQuarry.Data;

using IssueTrak.Common;

using IssueTrak.Data;

using System.Data;

using System.Web;

namespace IssueTrak.Extensions

{

public class XIndividual : IssueTrak.Extensions.ExtensionBase

{
}
}

Having made these changes you should be able to successfully compile the
IssueTrak.Extensions.Individual object.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 24 of 130

Register the Extension in the Studio

Go to the Extension list in the Studio

Create a new extension with the following values.

Name Value Notes
Module individual

Name XIndividual

Component Type Extension

AssemblyPathProd | %NQROOT%\Apps\IssueTrak\bin

Move off the row to save and back to the XIndividual row.

Click on the button in the Assembly Name field to browse for the Individual Extension
and the XIndividual component. This will fill in the remaining fields with the necessary

information.

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 25 of 130

Attach the Extension to the Individual Mapper

Go to the Mappers list (Alt+M) and select the individual mapper. In the extensions list,
add the extension you just registered.

Add the same extension to the individual_import mapper.
Log in to the application and navigate to the Individual list page. Then click on an area

of whitespace and press F8 to display the page debug information. You should see the
individual extension has been attached to the mapper.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 26 of 130

Override and Handle Events
Go back to your solution in Visual Studio, and the XIndividual.cs file.

Inside the class XIndividual, simply handle an event that’s available by typing “override
<space>" and then a type ahead list of all the available events pops up.

Create event handlers for the following events.

MapperBeforeLayout, MapperBeforeRequery, MapperExecSQL, RowAfterInsert,
RowAfterUpdate, RowBeforelnsert, RowBeforeUpdate, RowCurrent, RowSetDefaults

In each of these event handler stubs, you will automatically generate a call to the base
method. Simply delete the calls to the base object, leaving the event handler stubs with
an empty body.

MapperBeforeLayout

In the lifecycle of event handlers, this event is the last one that is fired where any
changes you make to a field, or mapper are effective. After this event has been handled
you can still make some UI changes, but you are limited in scope as to what changes
are still effective. There are some field UI changes you can make later in the event life
cycle, but this event supports modification of all field parameters.

Add the following code to make the email_address field hidden by default in the
list presented to people with the 'Users' role.

if (sender.Application.UserContext.HasProfile("Users"))

{
FieldFilterOptions ffo =

(FieldFilterOptions)sender.Fields["email address"].Properties.GetIntValue("FilterOptions");
ffo |= FieldFilterOptions.DefaultHideInList;

ffo &= ~FieldFilterOptions.DefaultShowInList;
sender.Fields["email_address"].Properties.Add("FilterOptions", ffo);

}

MapperBeforeRequery

This event is fired just before construction of the mapper’s SQL. Typically you can use
this event to change the filtering of the mapper.

Add this code to make the individual list filter out users who are system admins when
the logged in user does not have an allowed policy to see system admins.

if (!sender.Application.HasPolicy("CanViewSysAdmin", false))

{

MapperFilter mf = new MapperFilter("CanViewSysAdmin", "user_id NOT IN (SELECT user_id FROM
user_roles WITH(NOLOCK) WHERE role nm='System Admin')");

sender.Filters.Add(mf);

}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 27 of 130

To support this code, go into the Studio and navigate to the “Policies” list under
Permissions and add the following Policy

Item Value Notes
Module IssueTrak-roles

Name CanViewSysAdmin

Description Allow viewing sys admin individuals

In the Permissions subform, uncheck the User role and Manager role. Then click the
Save button.

MapperExecSQL

This event is fired just before the mapper’s SQL is executed against the database. You
can completely replace the executed SQL if you wish.

Add this code to the extract the executing SQL. This rebuilds the executing SQL and
sets it back.

if (e.StatementType == ExecSQLArgs.ExecuteStatementType.Select)

{

string theSQL = e.SQL;

string selectSQL = EAPUtil.ToString(sender.Exec(MapperExecCmds.GenerateSelectSQL, 0));
string whereSQL = e.RowRequeryFilter.IsNullOrEmpty() ? sender.Filters.ToString() :
e.RowRequeryFilter;

string orderSQL = EAPUtil.ToString(sender.Exec(MapperExecCmds.OrderByClause, 0));
string newSQL = string.Format("{©} FROM {1} WITH(NOLOCK) ", selectSQL, sender.View);

if (!whereSQL.IsNullOrEmpty())

¢ newSQL += "WHERE " + whereSQL;

if ('ordersQL.IsNullOrEmpty())

¢ newSQL += "ORDER BY " + orderSQL;
i.SetSQL(newSQL, e.StatementType);
}

RowAfterInsert

Fired after a record has been successfully inserted into the database. This event would
add business rules that should fire once a record has been successfully inserted.

Add this code to send an email to the user welcoming them to IssueTrak once a new
user has been created.

string email_address = sender.Fields.GetStringValue("email address", null,
FindBehaviour.ErrIfNotFound);
sender.Send(email_address, "email-welcome-to-issuetrak");

NetQuarry - Issue Track Tutorial - Part 3.docx Page 28 of 130

RowAfterUpdate

Fired after an existing record has been successfully updated in the database. This event
would add business rules that should fire once a record has been successfully updated.

Add this code to send an email to a user with the same welcome template if the users
user id has been changed.

if (sender.Fields["user_id"].Dirty)
{

string email _address = sender.Fields.GetStringValue("email address", null,
FindBehaviour.ErrIfNotFound);
sender.Send(email_address, "email-welcome-to-issuetrak");

}

RowBeforelInsert

Fired before a new record is inserted into the database. Here you should validate the
input parameters and pull in additional data that can be derived from the data about to
be inserted.

Add this code to force the user to provide a gender for a new user. Ideally you would
do this in the metadata by setting the field’s “"Required” attribute

if (sender.Fields.GetIntValue("gender_id", @, FindBehaviour.ErrIfNotFound) == 0)
{

e.Error("You must provide a gender for this individual");

}
RowBeforeUpdate

Fired before an existing record is updated in the database. Here you should validate the
input parameters and pull in additional data that can be derived from the data about to
be updated.

Add this code to set the address field from the constituent parts.

if (sender.Fields["address"].Dirty)

{

string fullAddress = string.Format("{@}\r\n{1}, {2} {3}",
sender.Fields.GetStringValue("address", null, FindBehaviour.ErrIfNotFound),
sender.Fields.GetStringValue("city", null, FindBehaviour.ErrIfNotFound),
sender.Fields.GetStringValue("state", null, FindBehaviour.ErrIfNotFound),
sender.Fields.GetStringValue("postal_code", null, FindBehaviour.ErrIfNotFound));

sender.Fields.SetValue("full address", fullAddress);
}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 29 of 130

RowCurrent

Fired when the mapper cursor moves to the next row. On a detail screen this fires once
because the data for only one record is displayed. On a page rendering a list, it is fired
for each row displayed in the list.

Add this code to upper case the last name of the user, if the user is a System Admin.
Note that this is an EXPENSIVE operation to perform for each row. It's only
showed as an example and NOT to be blindly followed as a recommended pattern.

if (sender.Database.DBExists("user_roles", string.Format("{@} AND role nm='System Admin'",
sender.Fields["user_id"].BuildFilter())))
{

sender.Fields.SetValue("last_name",
sender.Fields.GetStringValue("last_name", null, FindBehaviour.ErrIfNotFound).ToUpper(),
SetValFlags.DoNotMakeDirty,
FindBehaviour.OkIfNotFound);

}
RowSetDefaults
Fired when the mapper is displaying a new page. This gives you a chance to set or
override default values. After this event is handled, default values are assigned to the
values of the fields.
Add this code to set the default value for the password and company on a new
individual.

sender.Fields["password"].DefaultValue = "passwordl";

sender.Fields["company_id"].DefaultValue = Session.CompanyID;
e.Result = ExtResults.DataChanged;

NetQuarry - Issue Track Tutorial - Part 3.docx Page 30 of 130

Extension in Action

Now compile your extension. If you have a problem compiling due to file being locked
in use by another process, it's either the worker process (that you need to recycle) or
due to the NQ Studio having a lock on the file after you have browsed and added
components.

To solve that, use the NQ Links shortcut under tools “ResetAppPool.bat” to recycle the
app pool, and if that doesn’t work, close and re-open the NQ Studio.

Then log in to the application as an admin user and navigate to the individual list.

You can see some individuals have an upper case last name. And you can navigate to
those users to confirm they are system admins.

You can create a new individual and confirm that the password and company field is
defaulted.

Continue creating a new user. If you don't provide a Gender, you get an error. Provide
a gender and save. You should then get an email notification delivered to your MailTrap
account (or popup on your local SMTP4Dev app).

Now edit the user you just created. Change the user_id to force an email to be
delivered, and set an address so the full_address field is populated. If you make other
changes to an individual without touching user_id, or the address field, nothing
happens.

Logon as a user with a Manager role to verify that they cannot see individuals who are
administrators. There should be no individuals listed where their last name is
capitalized.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 31 of 130

Debugging the Extension

If you wish to debug the extension, you can do so by launching the debugging tools in
Visual Studio by attaching to the w3wp.exe process. There is one w3wp.exe process
per application pool, so if your development machine has multiple app pools, then you
may have to simply guess the correct process to attach to.

Once you have attached to the correct worker process, you can set breakpoints and step
through the code inspecting the underlying objects.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 32 of 130

Adding Real Functionality

What we've got in the extension is a set of example code. One thing we should do is
ensure that when we create a user, that user has a role created for them by default.
We'll choose the Users role as the default.

We'll add some code in the RowBeforelnsert and RowAfterInsert extension handlers for
the XIndivididual extension.

First we'll create the function to ensure the user_role will always be created when
necessary.

private void SetDefaultRole(IMapper sender)
{

if (sender.Fields.GetStringValue("user_role", null,
FindBehaviour.OkIfNotFound).IsNullOrEmpty())

{

}
}

We're using the helper method on the fields collection to return a value typed to a
string. However, we have set the FindBehavior flag to OkIfNotFound. This means that
if the field does not exist on the mapper, the platform won't throw an error and instead
will return a default value, which we've set as null. If we get a null value back from the
call, it actually means one of two things. The field exists and the value is not set, or
there is no field. So we have to further differentiate between those two situations.

This is because this XIndividual mapper extension is attached to two different mappers.
The individual mapper (where there is no user_role field) and the individual_import
mapper (where there is a user_role field).

If the field exists, it must be the individual_import mapper so we have to set the field
value to “User” BEFORE saving. The set up of the mapper will ensure the user_role
record is created. We know this because we imported a set of individuals.

If the field does not exist, it must be the individual mapper and we have to manually
create a user_role record for this user AFTER the user record has been created.

The code now becomes

private void SetDefaultRole(IMapper sender)
{

if (sender.Fields.GetStringValue("user_role", null,
FindBehaviour.OkIfNotFound).IsNullOrEmpty())

{

if (sender.Fields.ContainsKey("user_role"))

//--- the field exists so we set the value. It must be empty otherwise we wouldn't get
here
sender.Fields.SetValue("user_role", "Users");

}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 33 of 130

else

{

//--- need a way to insert a new record into user_roles table
//--- ENTER YOUR FOUR METHODS HERE!

o

There are a number of ways to perform the insert of the user_role record. We’'ll cover
four possible ways.

Adding a Record with SQL

string sInsert = string.Format(@"INSERT INTO user_roles
(user_role_id, user_id, role_nm)
VALUES (NEWID(), {@}, 'Users')",

EAPUtil.AnsiQuote(sender.Fields.GetStringValue("user_id", null,
FindBehaviour.ErrIfNotFound)));

sender.Database.Execute(sInsert, "IssueTrak.Extensions.XIndividual.SetDefaultRole");

Adding a Record using SQLInserter

The NetQuarry Platform comes with a set of classes that help you execute a SQL
statement without having to explicitly write SQL. There is a SQLUpdater, SQLInserter
and SQLDeleter. We are inserting a record so we'll use the SQLInserter for this task.

SQLInserter si = new SQLInserter(sender.Database, "user_roles");
si.AddColumn("user_role id", EAPUtil.NewGuid(), System.Data.0leDb.0leDbType.Guid);
si.AddColumn("user_id", sender.Fields.GetStringValue("user_id", null,
FindBehaviour.ErrIfNotFound), System.Data.0leDb.0leDbType.VarChar);
si.AddColumn("role_nm", "Users", System.Data.0leDb.0leDbType.VarChar);
si.Execute("IssueTrak.Extensions.XIndividual.SetDefaultRole");

Adding a Record using a Mapper

using (IMapper mapUR = NetQuarry.Data.Mapper.CreateAndLoad("user_roles", this.Application, 9))
{
mapUR.MoveNew();

mapUR.Fields.SetValue("user_id", sender.Fields["user_id"].Value);
mapUR.Fields.SetValue("role nm", "Users");

mapUR.Save();

mapUR.Close();

¥
This example shows a pattern that you must follow religiously. When you create a
mapper in your code, you must explicitly Close it. Yes even though the Mapper is
opened in a using block which should normally dispose.

Adding a Record Using a Typed Mapper

Before we describe the method through the typed mapper, we have to create a typed
mapper object for the user_roles mapper.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 34 of 130

In Visual Studio, go back to the IssueTrak.Common project. Add a NEW ITEM of
template type “Class” and call it Users.cs

Make sure the content of the Users.cs file looks as follows

using System;

using System.Collections.Generic;
using System.Text;

using NetQuarry.Data;

using NetQuarry;

using IssueTrak.Common;

using IssueTrak.Data;

namespace IssueTrak.Data

{

public class Users : IssueTrak.Data.Generated.users<Users>

{
}

public class UserRoles : IssueTrak.Data.Generated.user_roles<UserRoles>
{
}
}

Compile the Common Project

Now go back to the individual extension to enter the code for Typed Mapper record
creation.

using (UserRoles tmUR = UserRoles.OpenNew(this.Application))

{
tmUR.user_id = sender.Fields.GetStringValue("user_id", null, FindBehaviour.ErrIfNotFound);
tmUR.role_nm = "Users";

tmUR.Save();
tmUR.Close();

}
The last step is to call the SetDefaultRole function.

The SetDefaultRole function performs a different task depending on which mapper is
performing the insert. The different mapper implies which process is occurring. If the
mapper key is individual_import, then the process is for an import. If the mapper key is
individual, then the process is for a manual individual creation.

For an import, the user_role field exists on the mapper and is available. Therefore we
can directly set the default role in the before insert. The platform will handle the save of
the default role.

For a manual creation (through page, issue!detail), the user_role field doesn't exist, so
we have to wait until the after insert handler before we can add the default role record.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 35 of 130

After the existing code in the body of the RowBeforelnsert handler, add the following
code.

if (sender.Key.EqualsCI("individual_ import™))

{
SetDefaultRole(sender);

}
In the RowAfterInsert handler (covering the issue!detail insert case), add the following

code.

if (sender.Key.EqualsCI("individual™))

{
SetDefaultRole(sender);

}

You can now compile the Individual Extension.

Log into the application and create a new Individual. If you entered all four sets of code
in the SetDefaultRole function, you should have four user_role records for your user!

NetQuarry - Issue Track Tutorial - Part 3.docx Page 36 of 130

Issue Extension
Follow the steps described for the Individual Extension, to create the Issue extension

As a reminder, you first create the Extension as Issue in Extensions folder then change
the project name to IssueTrak.Extensions.Issue. Add references to Platform and
Common assemblies, Copy AssemblyInfo.cs and project.build from the individual
extension and modify. Change the properties of the project. Change the name of the cs
file in the extension and modify the content to create a public class derived from the
issuetrak extension base.

In this extension we are going to create the following business rules.

If the milestone is not specified explicitly, then set the milestone to the next nearest
milestone in the future based on the selected project.

If the issue is not assigned to a specific user when the issue is saved, then choose the
assigned user from the user associated with the selected component.

To support these two requirements for creating a new issue, we have to TURN OFF the
Required attributes on the milestone_id and assigned_user fields. This will allow a user
to leave the fields blank and let the extension handle setting the appropriate default
issue.

However, on an existing record, we want to force back the required attributes for these
fields.

Set the assigned user to the creator of the issue when an issue is resolved (unless a
user has explicitly selected a different user in the resolution wizard)

Set the assigned user to the default assignee based on the selected component if an
issue is rejected (unless a user has explicitly selected a different user in the rejection
wizard)

Send an email to the assignee when: The status of the issue changes or the assigned
user has changed but only if the assigned user is not the same as the current user.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 37 of 130

Create a RowBeforeInsert Handler
In your Issue extension, create an event override for RowBeforelnsert

We will add the following code to pull in default values into the issue if none are set for
assigned user and milestone.

//--- set the default assignee
if (!sender.Fields["assigned user"].Dirty)

{
sender.Fields["assigned_user_id"].Value = sender.Database.DBLookup("user_id", "component",
sender.Fields["component_id"].BuildFilter());

}

//--- set the default milestone
if (!sender.Fields["milestone_id"].Dirty)

{

string where = string.Format("{0} AND milestone_due_date > GETDATE() ORDER BY
milestone_due_date", sender.Fields["project_id"].BuildFilter());
sender.Fields["milestone_id"].Value = sender.Database.DBLookup("milestone_id", "milestone",
where);

}

You can compile the project and test it.

Remember, however, that you must first register the component into the studio as an
extension. (Associate the extension with the issue module) and then attach this
extension to the Issue mapper. Follow the instructions per the Individual mapper
extension.

Create an issue and don't set a specific assigned user, or milestone. After the save is
complete, both will be set to the appropriate default value. Next create an issue but
explicitly set an assigned user and milestone. After the save, they will be the same as
you selected.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 38 of 130

Create a MapperBeforeLayout Handler

Add a Reference in the Issue project to the System.Web assembly. Then add the
statement

using System.Web;

to the top of the Xlssue.cs file.

Now create an event override for MapperBeforeLayout.

We will add the following code to enforce requiredness of the assigned_user and

milestone fields on existing records

//--- Check to see if there is a http context. Sometimes your code runs under context of
scheduler

//--- and in that case the HttpContext.Current object is null

if (HttpContext.Current != null)

{
//--- if the “reg” query string parameter is not to a "new" page then make the fields
required.

string req = HttpContext.Current.Request[NetQuarry.RegParams.Request];
if (req != "new"

{
sender.Fields["assigned _user"].Attributes |= FieldAttrs.Required;
sender.Fields["milestone_id"].Attributes |= FieldAttrs.Required;
}
}

To see the effects of this you can compile the extension and then go to an existing
issue, and “edit” it. Both the Assigned User and Milestone fields are required. Start to
create a new issue and both fields are not required.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 39 of 130

Create a RowBeforeUpdate Handler
Create an event override for RowBeforeUpdate

We will add the following code to set the assigned user to the creator of the issue when
an issue is resolved and set the assigned user to the default assignee based on the
selected component if an issue is rejected. Also take into account that we should not
default these values if the user has made an explicit assignment in the workflow wizard

//--- since status can only be changed by workflow wizards (at the moment)
//--- we can ask the mapper what page it's on to determine what to do.

if (!sender.Fields["assigned_user"].Dirty)

{

switch (sender.MOP)

{

case "issuelwiz_resolve":
sender.Fields["assigned_user_id"].Value
break;
case "issuelwiz_close":
sender.Fields["assigned user_id"].Value
break;
case "issuelwiz_reject":
sender.Fields["assigned user_id"].Value = sender.Database.DBLookup("user_id",
"component", sender.Fields["component_id"].BuildFilter());
break;
case "issuelwiz_reopen":
sender.Fields["assigned_user_id"].Value = sender.Database.DBLookup("user_id",
"component"”, sender.Fields["component_id"].BuildFilter());
break;

sender.Fields["created by id"].Value;

null;

}
}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 40 of 130

Create a RowAfterInsert Handler
Create an event override for RowAfterInsert.
We will add the following code to send an email notification when an issue is created.

Because there is some commonality between this handler and RowAfterUpdate handler,
we'll make a function call to some code that handles all the send scenarios.

SendEmailNotification(sender, true);

NetQuarry - Issue Track Tutorial - Part 3.docx Page 41 of 130

Create a RowAfterUpdate Handler
Create an event override for RowAfterUpdate.

Again the body of this function is a call to another function

SendEmailNotification(sender, false);

NetQuarry - Issue Track Tutorial - Part 3.docx Page 42 of 130

Create the Email Notification Handler

Now create the handler function to send an email notification to the assigned user.
private void SendEmailNotification(IMapper sender, bool isCreated)

{

string notifyTemplate = null;

//--- we said only to send an email notification if the assigned_user_id has changed
//--- and the assigned_user_id is not the same as the currently logged in user.

if ((sender.Fields["assigned user_id"].Dirty || sender.Fields["status_id"].Dirty) &&

IEAPUtil.ToString(sender.Fields["assigned _user_id"].Value).EqualsCI(this.Application.UserConte
xt.ID))

{
switch (sender.MOP)
{
case "issuelwiz_resolve":
notifyTemplate = "issue-resolved”;
break;
case "issuelwiz close":
//--- there is no notification when an issue is closed
break;
case "issuelwiz_reject":
notifyTemplate = "issue-rejected";
break;
case "issuelwiz_reopen":
notifyTemplate = "issue-reopened”;
break;
default:
notifyTemplate = isCreated ? "issue-created" : "issue-assigned";
break;
}
//--- check for some error conditions and throw a descriptive error if necessary
if (!notifyTemplate.IsNullOrEmpty())
{

string to = sender.Fields.GetStringValue("email address", "", FindBehaviour.ErrIfNotFound);
if (!to.IsNullOrEmpty())

¢ //--- send an email to the assigned user with the given template
sender.Send(to, notifyTemplate);

}

else

{

throw new EAPException(string.Format("Could not determine an email address for the
assigned user: {0} on issue: {1}. An email notification was not sent”,
sender.Fields["assigned_user"].Value, sender.Fields["issue_number"].Value));

¥
}
else
{

if (!sender.MOP.EqualsCI("issuel!lwiz_close"))
{
throw new EAPException(string.Format("Unable to determine notification template for

issue {@}. An email notification was not sent", sender.Fields["issue number"].Value));

}

}

}
}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 43 of 130

You can compile the Issue extension, but you cannot test it yet. We have to create the
five email templates referred to in the code. To simplify this task, we will re-use the
same physical html file that was created by the application wizard for the issue!main

page.

In the NetQuarry Studio, create the required five templates (either from scratch or

duplicating an existing template) with the following settings.

Template

Settings

Notes

issue-created

Module: issue

Template Name: issue-created
Type: File

Category: Email

FileName: IssueTrak\issue\issue-detail-
layout.html

Subject: Issue {{issue_number}} has been
created and assigned to you.

issue-assigned

Module: issue

Template Name: issue-assigned
Type: File

Category: Email

FileName: IssueTrak\issue\issue-detail-
layout.html

Subject: Issue {{issue_number}} has been
assigned to you.

issue-resolved

Module: issue

Template Name: issue-resolved
Type: File

Category: Email

FileName: IssueTrak\issue\issue-detail-
layout.html

Subject: Issue {{issue_number}} has been
resolved and awaiting verification by you.

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 44 of 130

Template

Settings

Notes

issue-rejected

Module: issue

Template Name: issue-rejected
Type: File

Category: Email

FileName: IssueTrak\issue\issue-detail-
layout.html

Subject: Issue {{issue_number}} has been
rejected and assigned back to you.

issue-reopened

Module: issue

Template Name: issue-reopened
Type: File

Category: Email

FileName: IssueTrak\issue\issue-detail-
layout.html

Subject: Issue {{issue_number}} has been re-

opened and assigned to you.

Now you can login to the application to test the issue workflow and email notifications.

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 45 of 130

Issue Extension as a Typed Mapper Extension
Now we will create the same extension logic using the typed mapper based extension

In Visual Studio, go back to the IssueTrak.Common project. Add a NEW ITEM of
template type “Class” and call it Issue.cs

Make sure the content of the Issue.cs file looks as follows

using System;

using System.Collections.Generic;
using System.Text;

using NetQuarry.Data;

using NetQuarry;

using IssueTrak.Common;

namespace IssueTrak.Data

{

public class Issue : IssueTrak.Data.Generated.issue<Issue>

{
/// <summary>Override the default behavior of the status_id field</summary>
public new IssueTrak.Data.Picklists.issue status status_id

{
get { return ((IssueTrak.Data.Picklists.issue_status)base.status_id); }
set { base.status_id = (int)value; }

}

/// <summary>Override the default behavior of the severity_id field</summary>
public new IssueTrak.Data.Picklists.issue severity severity_id

{
get { return ((IssueTrak.Data.Picklists.issue severity)base.severity_id); }
set { base.severity _id = (int)value; }

}

/// <summary>Override the default behavior of the priority id field</summary>
public new IssueTrak.Data.Picklists.issue priority priority_id

{
get { return ((IssueTrak.Data.Picklists.issue priority)base.priority_id); }
set { base.priority_id = (int)value; }

}

/// <summary>Override the default behavior of the category_id field</summary>
public new IssueTrak.Data.Picklists.issue_category category_id

{
get { return ((IssueTrak.Data.Picklists.issue category)base.category_id); }
set { base.category_id = (int)value; }

}
}
}

Having created the typed mapper object which we shall shortly use to create the typed
mapper extension, we also have a container for storing useful utility functions related to
issues. As we re-enter the code for the typed mapper based extension, we will also
move out some “useful” functions into the typed mapper object and call those functions
from the typed mapper extension.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 46 of 130

Compile the Common Project
Now go back to the Issue extension and create the Typed Mapper extension class in the
XlIssue.cs file a follows.

public class XTMIssue : IssueTrak.Extensions.TypedExtensionBase<IssueTrak.Data.Issue>

{
}

Now create the same event handlers as the previous issue extension.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 47 of 130

Create a RowBeforeInsert Handler
In your Issue extension, create an event override for RowBeforelnsert

Then add this code

//--- set the default assignee
if (!sender.Fields.assigned_user.Dirty)

{

sender.SetAssigneeFromComponent();

}

//--- set the default milestone
if (!sender.Fields.milestone_id.Dirty)

{

sender.SetMilestoneFromProject();

}

In the Issue Typed Mapper class (in IssueTrak.Common) add the code for the two
functions

public void SetAssigneeFromComponent()

{

this.assigned _user_id = EAPUtil.ToString(this.Database.DBLookup("user_id", "component",
this.Fields.component_id.BuildFilter()));

}

public void SetMilestoneFromProject()

{

string where = string.Format("{0} AND milestone_due_date > GETDATE() ORDER BY
milestone_due_date", this.Fields.project_id.BuildFilter());

this.milestone id = EAPUtil.ToInt(this.Database.DBLookup("milestone_id", "milestone", where));

}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 48 of 130

Create a MapperBeforeLayout Handler

Now create an event override for MapperBeforeLayout.

Then add the following code.

//--- Check to see if there is a http context.
scheduler

//--- and in that case the HttpContext.Current object is null
if (HttpContext.Current != null)

Sometimes your code runs under context of

{

//--- if the request is not to a "new" page then make the fields required.

string req = HttpContext.Current.Request[NetQuarry.RegParams.Request];

if (req != "new"

{
sender.Fields.assigned user.Attributes |= FieldAttrs.Required;
sender.Fields.milestone_id.Attributes |= FieldAttrs.Required;

}

}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 49 of 130

Create a RowBeforeUpdate Handler
Create an event override for RowBeforeUpdate

Then add the following code.

//--- since status can only be changed by workflow wizards (at the moment)
//--- we can ask the mapper what page it's on to determine what to do.

if (!sender.Fields.assigned_user.Dirty)

{

switch (sender.Mapper.MOP)

{

case "issuelwiz_resolve":
sender.assigned_user_id = sender.created_by_id;
break;

case "issuelwiz_close":
sender.assigned_user_id
break;

case "issuelwiz_reject":
sender.SetAssigneeFromComponent();
break;

case "issuelwiz_reopen":
sender.SetAssigneeFromComponent();
break;

null;

-

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 50 of 130

Create a RowAfterInsert Handler
Create an event override for RowAfterInsert.
We will add the following code to send an email notification when an issue is created.

Because there is some commonality between this handler and RowAfterUpdate handler,
we'll make a function call to some code that handles all the send scenarios.

sender.SendEmailNotification(true);

NetQuarry - Issue Track Tutorial - Part 3.docx Page 51 of 130

Create a RowAfterUpdate Handler
Create an event override for RowAfterUpdate.

Again the body of this function is a call to another function

sender.SendEmailNotification(false);

NetQuarry - Issue Track Tutorial - Part 3.docx Page 52 of 130

Create the Email Notification Handler

In the Issue Typed Mapper class (in IssueTrak.Common) add the code for the email
send function

public void SendEmailNotification(bool isCreated)

{

string notifyTemplate = null;

//--- we said only to send an email notification if the assigned user_id has changed
//--- and the assigned_user_id is not the same as the currently logged in user.

if ((this.Fields.assigned_user_id.Dirty || this.Fields.status_id.Dirty) &&
Ithis.assigned_user_id.EqualsCI(this.Application.UserContext.ID))

{
switch (this.Mapper.MOP)
{
case "issuelwiz_resolve":
notifyTemplate = "issue-resolved”;
break;
case "issuelwiz_close":
//--- there is no notification when an issue is closed
break;
case "issuelwiz_reject":
notifyTemplate = "issue-rejected";
break;
case "issuel!wiz_reopen":
notifyTemplate = "issue-reopened”;
break;
default:
notifyTemplate = isCreated ? "issue-created" : "issue-assigned";
break;
¥
//--- check for some error conditions and throw a descriptive error if necessary

if (!notifyTemplate.IsNullOrEmpty())

if (!this.email_address.IsNullOrEmpty())

¢ //--- send an email to the assigned user with the given template
this.Send(this.email _address, notifyTemplate);

}

else

{

throw new EAPException(string.Format("Could not determine an email address for the

assigned user: {0} on issue: {1}. An email notification was not sent", this.assigned user,
this.issue_number));

¥
}
else
{

if (!this.Mapper.MOP.EqualsCI("issue!wiz_close"))
{

throw new EAPException(string.Format("Unable to determine notification template for
issue {@}. An email notification was not sent", this.issue_number));

}
}
}
}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 53 of 130

Having made these changes, you will have to compile the IssueTrak.Common.dll and
then the Issue Extension.

Register the Typed Mapper version of the extension into the Studio, then attach the
Issue typed mapper extension to the issue mapper. On the original Issue mapper
extension, you can set it’s attribute to “Disabled”. This allows you to keep the meta
data around but not use it.

There’s more functionality to add to this extension, but let's move away to look at page
extensions for the time being.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 54 of 130

Page Extensions

Page extensions can be attached to Console Template pages and Wizard Pages. They
are typically used to manipulate the UI based on complex business rules.

As with the Mapper Extension example, we'll run through a few of the Page extension
events to show you how you might want to use them.

Firstly we'll look at Page events for the Console Template pages.
Issue Console Page Extension

In the XIssue.cs file, declare the following page extension.
public class PXIssue : NetQuarry.PageExtensionBase
{
¥

We're going to create event handlers for ConsolePaneBeforeLayout,
ConsolePaneBeforeRequery, ConsolePaneAfterRequery

Before we add code, add a reference to NetQuarry Web Host to the Issue Extension
project.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 55 of 130

Create a ConsolePaneBeforeLayout Handler

We're going to add code to hide the related issues tab if there is at least one related
issue.

Also sometimes you may want to add functionality to force the navigation away from a
page when you navigate to the page. We'll show this example when the audit log for an

issue contains more than 10 rows, you automatically navigate to the full list of audit
records for that issue.

This code is ok for an example, but you probably don’t want to keep it!

//--- there is no live data at this time in the life cycle, so all
//--- data manipulation will rely on query param information

string pk = HttpContext.Current.Request[ReqParams.PrimaryKey];
if (!pk.IsNullOrEmpty())

{

//--- get access to a mapper.

//--- either get the mapper for the current console page (still no live data of course)

//--- or the mapper for the main slot element (still no live data) if the current element has

no mapper (e.g. MiniNav)

IMapper map = (EAPUtil.IsNullOrBlank(sender.MapperObject) ? sender.Console.MainMapperObject :
sender.MapperObject) as IMapper;

//--- but you still SHOULD check if the mapper is null or not.

////--- or if you just want access to an application object
EAPControlBase rend = sender.Renderer as EAPControlBase;
IAppContext cxt = rend.ApplicationContext;

if (map != null)

{
//--- hide the related issues if there is at least one related issue
if (sender.ElementInfo.Name == "related to")
{
if (map.Database.DBExists("issue rel", string.Format("issue_id={0}", pk.AnsiQuote())))
{
sender.Pane.Visible = false;
}
}
//--- navigate to audit list of more than 10 audit records
//--- navigate away ASAP which means when the main slot is being loaded. It’s the first

slot loaded
if (sender.IsMainPane)
{
string filter = string.Format("rel_id={@}", pk.AnsiQuote());
if (10 < map.Database.DBCount("*", "xot_audit_readable", filter))
{
//--- we need to filter the audit list to the list for this issue, not just any old
audit records
string fltParam = SavedFilter.RegisterReqFilter(cxt, filter);
fltParam = string.Format("flt={0}", EAPEncode.ForUrl(fltParam));
cxt.Navigate("audit!list", null, fltParam);
}
}
}
}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 56 of 130

Compile this project. Then register this extension into the application. You register a
page extension into the NetQuarry Studio just the same way as a mapper extension.
The fact that we added the “P” prefix to the extension name helps to differentiate page
extensions to mapper extensions since we don't explicitly differentiate the extensions by
type in the studio.

When the extension is registered, go to the list of Pages and the issue!'main page. Click
on the Extensions subform and add the PXIssue extension to the page.

Login to the application and navigate to the Issues list. Drill down to an issue. If there
are related issues, then the “Related Issues” pane is hidden. If not just relate some
issues to an issue. On refresh, the list will disappear.

Also if you don't have an issue with more than 10 audit records, you can find an issue
with no related issues, and then relate 10 issues to it (which generates 10 audit entries).
Once the changes are committed, you will be navigated to the audit list, rather than
staying on the issue page.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 57 of 130

Create a ConsolePaneBeforeRequery Handler

In this handler, we're going to manipulate the navigation links of the workflow actions.
Not only are we going to manage the visibility of the links based on the issue status, but
we're also going to change the navigation parameters to allow system admins to
manipulate issue workflow, without being required to add a document.

const string actResolve = "resolve";
const string actClose = "close";
const string actReject = "reject";
const string actReopen = "reopen";

if (sender.ElementInfo.ComponentInfo.Name.EqualsCI("mininav"))

{
if (sender.ElementInfo.Name.EqualsCI("workflow_actions™))
{
MiniNavCtrl mnc = sender.Renderer as MiniNavCtrl;
if (mnc != null)
{
//--- the main object mapper is populated and on the current row
IMapper map = sender.Console.MainMapperObject as IMapper;
//--- we can attach this mapper to a typed mapper if it's more convenient!
Issue iss = Issue.Attach(map);
//--- no doc requirement for workflow for admins
if (map.Application.UserContext.HasProfile("System Admin"))
{
mnc.Navigator.SetTargetProperty(actResolve, "QueryParams", "dispgs=document");
mnc.Navigator.SetTargetProperty(actClose, "QueryParams", "dispgs=document");
}
//--- set visibility per status.
switch (iss.status_id)
{
case IssueTrak.Data.Picklists.issue_status.open:
mnc.Navigator.SetTargetVisibility(actResolve, true);
mnc.Navigator.SetTargetVisibility(actClose, false);
mnc.Navigator.SetTargetVisibility(actReject, false);
mnc.Navigator.SetTargetVisibility(actReopen, false);
break;
case IssueTrak.Data.Picklists.issue status.resolved:
mnc.Navigator.SetTargetVisibility(actResolve, false);
mnc.Navigator.SetTargetVisibility(actClose, true);
mnc.Navigator.SetTargetVisibility(actReject, true);
mnc.Navigator.SetTargetVisibility(actReopen, false);
break;
case IssueTrak.Data.Picklists.issue_status.closed:
mnc.Navigator.SetTargetVisibility(actResolve, false);
mnc.Navigator.SetTargetVisibility(actClose, false);
mnc.Navigator.SetTargetVisibility(actReject, false);
mnc.Navigator.SetTargetVisibility(actReopen, true);
break;
}
}
}
}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 58 of 130

Create a ConsolePaneAfterRequery Handler

In this handler, we're going to manipulate the navigation links of the page element
panes. These are the links that suggest “Click Here to View All”, “"New”, or “Add".

We're going to add code that will hide the ability to add documents, notes, relate issues
and edit an issue, when the issue has been closed.

if (sender.IsMainPane)

{

//--- requery of main pane, mapper only has data in after requery
IMapper map = sender.Console.MainMapperObject as IMapper;

Issue iss = Issue.Attach(map);

bool cankdit = (iss.status_id != IssueTrak.Data.Picklists.issue status.closed);
sender.LinkList.Enabled = canEdit;
}

else if (sender.ElementInfo.ComponentInfo.Name.EqualsCI("minilist"))
{
//--- the main object mapper is populated and on the current row
IMapper map = sender.Console.MainMapperObject as IMapper;
if (map!= null)
{
Issue iss = Issue.Attach(map);
bool cankdit = (iss.status_id != IssueTrak.Data.Picklists.issue status.closed);
switch (sender.ElementInfo.Name)
{
case "notes":
case "documents":
sender.LinkNew.Visible
break;
case "related_to":
sender.LinkAdd.Visible
break;

cankdit;

cankdit;

-

NetQuarry - Issue Track Tutorial - Part 3.docx Page 59 of 130

Issue Wizard Page Extension

We are going to re-use the same page extension class for wizard events that we used
for the console page events. However there is nothing stopping you from creating
extensions explicitly for Console Pages and Wizards.

In the NetQuarry studio, go to the list of pages. For each of the issue wizards, add the
extension IssueTrak.Extensions.PXIssue.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 60 of 130

Create a WizardBeforePageLoad Handler
In your Issue page extension, create an event override for WizardBeforePagelLoad

We will add code to manipulate the descriptive text that can be applied to a wizard.
Now you can simply add a static description to a wizard just by setting the Description
property on the page element.

IWizPage wp = e.WizardPage;

IAppContext cxt = wp.AppContext;

TextItem ti = wp.PageElementInfo.TextItems["Description"];

//--- 1if there is no description text item, you have to create a new text item

if (ti == null) ti = new TextItem("Description", "description", @, null, null, null);

switch (wp.PageElementInfo.Name)

{

case "issue":
ti.Text = "Your opportunity to change information about the issue.";
break;

case "note":
switch (wp.PageInfo.Name)

{
case "wiz_close":
ti.Text = "Give a polite congratulatory message for fixing the issue.";
break;
case "wiz_reject":
ti.Text = "Give a good reason for rejecting the issue.";
break;
case "wiz_reopen":
ti.Text = "Justify why you think the issue should be reopened.";
break;
case "wiz_resolve":
ti.Text = "Explain why you think the issue is fixed!";
break;
}
break;
case "document":
ti.Text = "Upload additional supporting information.";
break;

}
wp.PageElementInfo.TextItems.Add("Description”, ti);

Login to the application and go to the Issues list. Click on one of the action buttons to
launch an issue workflow wizard. You will now see on each page a green banner
displaying the descriptive text based on the context of the selected wizard button.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 61 of 130

Create a WizardNext Handler

We will add code to skip the notes page in either the Resolve, or Close issue wizards.
The logic to skip the page will be when a note text has been added. We'll show two
ways to do this. Either by detecting that note text has been entered, or that we've
visited the third page of the wizard at least once. You can't pass the page to enter a
note until you provide a note, so having visited page 3 implies you entered data into
page 2.

In addition we will manipulate the note text to append a timestamp to the beginning of
a note.

Finally we will add code to prevent continuing through the wizard if the resolve wizard
note text contains “could not reproduce” and the close wizard note text does not contain
“thank”.

IWizardTemplate w = e.Wizard;
IWizPage wp = e.WizardPage;
IAppContext cxt = wp.AppContext;
IMapper map = wp.Mapper as IMapper;
string noteText = string.Empty;

//--- determine what the next page should be. Never code a page number test directly
//--- e.g. if (e.NextPage == 2)
if (e.NextPage == w.GetPageNumber("note"))

{
//--- if we already provided a note, then skip the note page
switch (wp.PageInfo.Name)
{
case "wiz_resolve":
//--- interrogate the wizard page's UserData for a note_text value in the note instance.
noteText = wp.PageData.GetString("note", "note_text", null);
if (!noteText.IsNullOrEmpty())
{
e.NextPage = e.Wizard.GetPageNumber("document");
}
break;
case "wiz_close":
//--- determine if the document page has ever been visited.
if (w.PageVisits.Contains(w.GetPageNumber("document")))
{
e.NextPage = e.Wizard.GetPageNumber("document");
}
break;
}
}
else if (e.NextPage == w.GetPageNumber("document™"))
{
switch (wp.PageInfo.Name)
{

case "wiz_resolve":
//--- interrogate the wizard page's UserData for a note_text value in the note instance.
noteText = wp.PageData.GetString("note", "note_ text", null);
if (noteText.Contains("could not reproduce"”,
StringComparison.InvariantCultureIgnoreCase))

NetQuarry - Issue Track Tutorial - Part 3.docx Page 62 of 130

{

e.Error("You can't say 'could not reproduce' when resolving an issue.");
return;
}
break;
case "wiz_close":
noteText = wp.PageData.GetString("note", "note_text", null);
if (!noteText.Contains("thank", StringComparison.InvariantCultureIgnoreCase))

¢ e.Error("You must say thank you when closing an issue.");
return;
}
break;
}
//--- we navigate to the document page from the note page.
//--- so we have note text that we can modify

noteText = wp.PageData.GetString("note", "note_ text", null);
noteText = string.Format("Added on: {@}\r\n{1}", wp.PageData.GetString("note", "date_ created",

null), noteText);
wp.PageData.SetValue("note", "note_text", noteText);

}

Compile the extension and log in to the application.

Navigate to the Issues list and find an issue that is Open. Click on the “Resolve” action
button. On page 2 add a note, and click next to the document page. Don't upload a
document yet. Click on the “"Back” button. When the “Note” page appears, you can see
the note text has been modified with the date stamp. Click previous again to the first
page “Issue”. Then click the “Next” button. The wizard navigation will skip page 2 to
the last documentation page.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 63 of 130

Create a WizardPrevious Handler
Create an event override for WizardPrevious

Ordinarily we don't have to add any code to manipulate “Previous” navigation. The
platform keeps track of which pages are visited and simply navigates back to the
previous page in the stack of visited pages.

However, in the first pass through, we visit page 1, 2 then 3. Clicking “Previous” from
page 3, the stack logic says go back to page 2. Since page 2 has data on it, we do not
want to visit page 2 “Note” any longer.

Add the following code to manipulate the “Previous” navigation if note text is provided.

IWizardTemplate w = e.Wizard;
IWizPage wp = e.WizardPage;
IAppContext cxt = wp.AppContext;
IMapper map = wp.Mapper as IMapper;

//--- determine what the next page should be.

if (e.NextPage == w.GetPageNumber("note"))

{

//--- if we already provided a note, then skip the note page
switch (wp.PageInfo.Name)

{
case "wiz_resolve":
//--- interrogate the wizard page's UserData for a note_text value in the note instance.
string noteText = wp.PageData.GetString("note", "note_text", null);
if (!noteText.IsNullOrEmpty())
{
e.NextPage = e.Wizard.GetPageNumber("issue");
}
break;
case "wiz_close":
//--- determine if the document page has ever been visited.
if (w.PageVisits.Contains(w.GetPageNumber("document")))
{
e.NextPage = e.Wizard.GetPageNumber("issue");
}
break;
}
}

Compile and login to the application. Go to issues list and find another open issue to
resolve. This time when you get to the document upload page and click previous, the
“note” page will be skipped

NetQuarry - Issue Track Tutorial - Part 3.docx Page 64 of 130

Create a WizardCancel Handler
Create an event override for WizardCancel.

You normally handle the cancel event when you want to manipulate the navigation
behavior when the cancel button is clicked. The default handling is set in the Wizard
Page metadata properties for CancelAction, etc. In the metadata we set up the issue
wizards to “Return” back to the original caller. We'll override that behavior based on
which is the current page.

IWizardTemplate w = e.Wizard;
IWizPage wp = e.WizardPage;
IAppContext cxt = wp.AppContext;
IMapper map = wp.Mapper as IMapper;

switch (w.CurrentPage)

{
case 1:
//--- get the issue_id from the user data, or off the query string
string issue_id = wp.PageData.GetString("resolve_issue", "issue_id", null);
if (issue_id.IsNullOrEmpty())
{
issue_id = HttpContext.Current.Request[ReqgParams.PrimaryKey];
if (issue_id.IsNullOrEmpty())
{
issue_id = HttpContext.Current.Request[RegParams.ParentRowKey];
}
}
cxt.Navigate("issue!main"”, issue_id);
break;
case 2:
cxt.Navigate("issue!list");
break;
case 3:

string assignedUser = wp.PageData.GetString("close_issue", "assigned user_id", null);

string individualID = EAPUtil.ToString(map.Database.DBLookup("user_guid", "users",
string.Format("user_id={0}", assignedUser.AnsiQuote())));

cxt.Navigate("individual!main", individualID);

break;

Compile and log in to the application. Navigate to the Issue List and run through the
issue wizards. On each page of the wizard, click the Cancel button to see the effects of
the different logic.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 65 of 130

Manipulating Sets of Data

A common requirement in an application is to perform a bulk operation on a set of
records. We've already seen implementations of this idea when we added the Template
Mailer and Export to Excel extensions to mappers. These added “Actions” to the menu
bar (either via the Actions menu on the page, or as a separate toolbar button on the

page).

The basic idea is to add the action button to a page that, when clicked, fires a command
via the MapperCommand event back to an extension. In the extension you either
directly perform actions on the selected records, or you cache the affected records and
perform the action elsewhere.

Making Bulk Updates to Issues
We are going to implement a process that allows a user to select one or more issues
from a list and make bulk changes to those issues based on a set of user defined

choices. Once the bulk update process has finished, then we will navigate to the list of
touched issues.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 66 of 130

Creating the Action Menu

There are two ways we can do this. Create a menu navigator in metadata, or
programmatically add the action menu in code. The template mailer and excel export
extensions add the action items via code.

For now, we'll add the action menu via metadata.

Open the NetQuarry Studio and navigate to “Menus” under “Navigator”.

Add a "Menu” with the following settings.

Item Value Notes
Module issue

Name issue-mnu

Type Menu

On the Targets subform of the “issue-mnu” Menu, create the target

Item Value Notes
Module issue
Name bulk-update

TargetType Command

Target bulk-update

Sort Order 10

NetQuarry - Issue Track Tutorial - Part 3.docx Page 67 of 130

Set the following properties

Property Value Notes
CommandLocation Toolbar
CommandAttributes RequireSelection Forces a user to choose at least one record from the

list before the action is performed. If you want to
allow the action to be performed against the entire
set of records matching the filter, then don't set the
RequireSelection attribute.

Caption Bulk Update Issues

Confirmation Are you sure you want
to perform a mass
update of the selected
issues?

ToolTip Make bulk changes to
a set of issue you have
selected.

Now go to the Page list and select the page “issuellist”. In the property sheet of the
page, set the PageCommands property to “issue-mnu”.

Login to the application and you can see the action button is added.

T A prTrrEp— prewye Pp————

Issues [1 - 50 of 305]

Next Hew Refresh Delete Show All Actions Filters Customize Bulk <
Actions Issue Number® Summary Assigned User Status

Notice that the button is not wide enough to display all the text. We have to go into the
custom.css file and style the button to be a little larger. Open the file
%NQROOT%\Apps\IssueTrak\Styles\custom.css and add the following style.

Script Notes
#toolbar_bulk-update_b Basically you can inspect the button element to get the id of
{ the button. That name will be used in your style sheet to set
width: 13@px; a specific width.
. B
}
Customize Bulk Update Issues
\ssigned User Status Cate

NetQuarry - Issue Track Tutorial - Part 3.docx Page 68 of 130

IMPORTANT

The style sheet you modified is part of the platform installation. Therefore, if you
reinstall a new platform version, the changes you made to the css file will be lost
forever.

To avoid this loss, you should copy your modified css file to the folder
C:\NetQuarry\Customers\IssueTrak\Config\web\Styles

After the install has been completed, the Install.bat file contains a step to copy the
backed up custom.css style sheet to the %NQROOT%\Apps\IssueTrak\Styles folder.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 69 of 130

Handling the Action Menu Command event

Now go back to your Issue extension in visual studio. In the XTMIssue mapper
extension component (the typed mapper version of the issue extension), add an
override for “MapperCommand” as follows...

public override void MapperCommand(Issue sender, EAPCommandEventArgs e)

{

switch (e.CommandName)
{
case "bulk-update":
PerformBulkUpdate(sender);
break;
//--- DO NOT HAVE A DEFAULT CASE
//--- ONLY HANDLE COMMANDS YOU KNOW ABOUT
}
¥

private void PerformBulkUpdate(Issue sender)

{

//--- save of a 'bucket' of keys matching those selected and get its ID

string filterName = "Issue Bulk Update";

FilterAttributes fa = FilterAttributes.Static | FilterAttributes.Temp |
FilterAttributes.KeyGuid | FilterAttributes.Hidden;

//--- save a filter of the selected records

SavedFilter sf = sender.Mapper.Exec(MapperExecCmds.FilterSave, fa, filterName) as SavedFilter;
//--- then register this filter

string fl1tQP = SavedFilter.RegisterReqFilter(this.Application, sf.Filter, "Bulk Modified
Issues", "Issues affected by your bulk changes", "issuel!list");

//--- navigate to an issue modification wizard page

//--- navigating as new so we don't need a PK to go to a specific record

//--- and pass along the ID of the saved filter. These are the issues we are going to
process.

sender.Application.Navigate("issue!wiz_bulk_modify", null, "flt_id=" +
EAPEncode.ForUrl(f1tQP), "new");

}

Compile the Extension.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 70 of 130

Create the Issue Bulk Modify Wizard

We now have to create a new wizard page to provide a set of options to modify an
issue.

In the NetQuarry Studio go to the Pages list and add a new page with the following
settings.

Item Value Notes
Module issue

Name wiz_bulk_modify

Moniker make bulk issue changes

Template WizTemplate.aspx

Mapper <nothing>

With that new Page selected, click on the Property sheet and set the following
properties.

Property Value Notes

WizardAttributes NoStepCaption A one page wizard shouldn’t need a step caption
CancelAction Return to Caller

FinishAction Return to Caller

Caption Bulk Modify Issues

Finish_Caption Commit

Go to the Extensions subform of the page and add the IssueTrak.Extensions.PXIssue.

This wizard will have a page to make changes to issues and also require a note to be
specified to justify making a change. Previously, we have seen a wizard example where
these separate ideas would be shown on separate pages. This time we'll create this
wizard where both of the elements are on a single page.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 71 of 130

Now add the Page Elements with the following settings

Item Value Notes

Slot Name WizardPage

Name bulk_modify

Component WizardGrouper This is the component type that allows multiple instances
to be rendered on the same page. Think of this as a
Wizard page in the form of a Console Page.

Order 10

Create the next Page Element for modifying issue settings

Item Value Notes

Slot Name WizardGrouper

Name issue_data

Component WizardPhantomDetail

Order 20

With that new Page Element selected, click on the Property sheet and set the following

properties.
Property Value Notes
InstanceName issue
Mapper issue
FieldList assigned_user;priority_id;severity_id;st
atus_id
Grouper bulk_modify
Caption Modify Issue Data

Create the next Page

Element for adding a note about the change you make

Item Value Notes
Slot Name WizardGrouper

Name required_note

Component WizardPhantomDetail

Order 30

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 72 of 130

With that new Page Element selected, click on the Property sheet and set the following
properties.

Property Value Notes
InstanceName note

Mapper note

FieldList note_text

Grouper bulk_modify

Caption Justify your modification

Having created the page to modify issues, you can login to the application, go to the
issues list. Select a couple of issues and click on the “Bulk Update Issues” button. If
you have not selected an issue, you'll get the error message...

r B
& The page at tutorial says: &J
|

You must select one or more items.

s .

A

When you navigate to the bulk modify page you should notice a couple of things.

Bulk Modify Issues

Modify Issue Data

Priority: * =

Severity: * -

Justify your modification

Note Text: * |

The Priority and Severity fields are required. Since this is an optional procedure, we
have to make these two fields optional. Also, the Status field is missing even though we
explicitly selected the field in the FieldList property. The Status field is missing because
the field has a Hide Flavor of “new”. This is a new record so the field is hidden.

We'll fix this through custom flavoring.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 73 of 130

Fix the Bulk Modify Wizard UI

Go to the Studio and the Mappers list. Select the “issue” mapper and click on the
Custom Flavor Names tab. Add a custom flavor with the following values.

Item Value Notes
Flavor Custom1
Name bulk_modify

Zustom Flavor Names - (1 Rows)

Flavor
Custom1

Custom Name

[

bulk_modify

Click on the Field Subform. We are going to duplicate a set of fields that are essentially
required, that we need to make NOT required. This set of fields includes the three fields
on the screen as well as the set of fields that are required that are not visible.

Individually select each of the following fields, Right Click and Duplicate. (Do not Press
F5 to refresh the list)

status_id, priority_id, severity_id, summary, description, category_id, project_id and

component_id

On each of the fields that you've just duplicated, set the Exclude flavor of c1 —

bulk_maodify

Attributes:

vlicl - bulk_modify

c2 - Custom2

Now press F5 to refresh the list. On the fields that you duplicated that DONT have an
exclude flavor of c1 — bulk_modify, add the INCLUDE flavor of c1 — bulk_modify. When
you have finished your flavor settings must look like this.

Key Name Column Order | Picklist Column Width | Cell Type NET Type Data Type Include Flavor | Exclude Flavar | Versic
NI = TEREOR STt R ~
summary 30 28 | TextBox System.String nvarchar 4N |
description 40 40 | TextBox System.String | nvarchar 1 _
assigned_user 50 20 | TedBox System.String nvarchar 16384 _
assigned_user_id 50 0| ComboBax System.String nvarchar .l
assigned_user 50 20 | Find System.String | nvarchar 16384 1
status_id 60 | issue_status 12 | ComboBax System.Int32 int 524288 1 1
status_id 60 | issue_status 12 | ComboBax System.Int32 int 524289 1
status_id 60 |issue_status 12 | ComboBax System.Int32 int 1 524288 1
category_id 70 | issue_category 12 | ComboBax System.Int32 int 1 1
project_id 80 | projects 15 | ComboBax System.Int32 int 11
component_id 90 | components 15 | ComboBax System.Int32 int 1 .|
priority_id 100 | issue_priory 12 | ComboBax System.Int32 int 1 I,
priority_id 100 | issue_priorty 12 | ComboBax System.Int32 int 1 .._
| severity_id 110 | issue_severty 20 | ComboBax System.Int32 int 1 ’
i’; severity_id 110 | issue_severity 20 | ComboBax System.Int32 int 1)
SATESTOTETO 20RO 20 CoMyuoa TE IS ===t

For each of the fields with the INCLUDE flavor of c1 — bulk_modify make the following

changes.

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 74 of 130

Item

Value

Notes

Attributes Remove Required
Remove Audit
Remove Locked

HideFlavor Remove New Flavor

DefaultValue

Remove

Go to the Pages list and select the issue!wiz_bulk_modify page. Select the issue_data

Page Element. Set the Flavor property to c1 — bulk_modify.

Login to the application again and perform the bulk modify action.

Modify Issue Data

You can see the all the fields are visible and they are no longer required

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 75 of 130

Make Bulk Modify Wizard Co-Exist with Other Wizards

We now have the necessary UI created for the bulk update functionality. But before we
can make use of this, we have to make quite a few changes to the extension code we've
already created on both the issues typed mapper extension and the issue page
extension. This is to ensure that we are not going to execute code in the wrong
context.

In the RowBeforelnsert Handler of the XTMIssue extension, add the highlighted code as
follows

if (!EAPUtil.BitsSet(sender.Mapper.Flavor, Flavors.Customl))

{
//--- set the default assignee

if (!sender.Fields.assigned_user.Dirty)

{
}

//--- set the default milestone
if (!sender.Fields.milestone_id.Dirty)
{
sender.SetMilestoneFromProject();
}
¥

sender.SetAssigneeFromComponent();

This code tests the flavor of the mapper to determine the context of execution. We've
decided that Custom1 represents an issue mapper in the context of a bulk modify. In
this context we don't want to be setting any default values.

Go to the Issue.cs file that declares the Issue typed mapper object (in the
IssueTrak.Common project). Find the SendEmailNotification function.

We have to add some code to make sure the email_address field is in sync with the
assigned_user_id field. In a normal situation of saving an issue, after the saving of the
issue record, the record is re-queried and, because of the join in the underlying view of
the issue mapper, the correct email _address is pulled into the view from the new
user_id.

However in the code we're going to add, there will be no post save requery, so the
email address will need to be manually updated to ensure notifications are sent to the
correct assignee.

Add the highlighted code to the existing method

string notifyTemplate = null;

//--- we said only to send an email notification if the assigned_user_id has changed
//--- and the assigned_user_id is not the same as the currently logged in user.

if ((this.Fields.assigned_user_id.Dirty || this.Fields.status_id.Dirty) &&
Ithis.assigned_user_id.EqualsCI(this.Application.UserContext.ID))

{
switch (this.Mapper.MOP)

NetQuarry - Issue Track Tutorial - Part 3.docx Page 76 of 130

case "issuelwiz_resolve":

notifyTemplate = "issue-resolved";
break;
case "issuelwiz_close":
//--- there is no notification when an issue is closed
break;
case "issuelwiz_reject":
notifyTemplate = "issue-rejected";
break;
case "issuelwiz_reopen":
notifyTemplate = "issue-reopened";
break;
default:
notifyTemplate = isCreated ? "issue-created" : "issue-assigned"”;
break;

}

if (EAPUtil.BitsSet(this.Mapper.Flavor, Flavors.Customl) &&
this.Fields.assigned_user_id.Dirty)
{

//--- make sure we pull in the correct email address for this user if the user_id has
changed

this.Fields.email_address.SetValue(this.Database.DBLookup("email_address", "users",
string.Format("user_id={0}", this.assigned_user_id.AnsiQuote())), SetValFlags.OnlyIfDiff,
null);

}

//--- check for some error conditions and throw a descriptive error if necessary
if (!notifyTemplate.IsNullOrEmpty())
{
if (!this.email_address.IsNullOrEmpty())
{
//--- send an email to the assigned user with the given template
this.Send(this.email_address, notifyTemplate);
}
else
{
throw new EAPException(string.Format("Could not determine an email address for the

assigned user: {0} on issue: {1}. An email notification was not sent", this.assigned_user,
this.issue_number));

}
¥
else
{

if (!this.Mapper.MOP.EqualsCI("issuel!lwiz_close™))
{

throw new EAPException(string.Format("Unable to determine notification template for issue
{0}. An email notification was not sent", this.issue_number));

}
}
}

While we are in the IssueTrak.Common project, we are also going to add a new typed
mapper definition for the note mapper.

In the IssueTrak.Common project, create a new C# class file called “note.cs”.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 77 of 130

And add the following code to the note.cs file.

using System;

using System.Collections.Generic;
using System.Text;

using NetQuarry;

using NetQuarry.Data;

using IssueTrak.Common;

namespace IssueTrak.Data

{
public class Note : IssueTrak.Data.Generated.note<Note>
{
}
}

Compile the IssueTrak.Common project.

Now we have to make some changes to the existing code in the issue page extension,
PXIssue. Again, to ensure the right code executes under the right context.

In WizardBeforePageLoad, add the following highlighted code.

IWizPage wp = e.WizardPage;
IAppContext cxt = wp.AppContext;

switch (wp.PageInfo.MOP)
{
case "issuelwiz_close":
case "issuelwiz_reject":
case "issuelwiz_reopen":
case "issuel!wiz_resolve":
TextItem ti = wp.PageElementInfo.TextItems["Description”];
//--- if there is no description text item, you have to create a new text item
if (ti == null) ti = new TextItem("Description"”, "description", @, null, null, null);

switch (wp.PageElementInfo.Name)
{
case "issue":
ti.Text = "Your opportunity to change information about the issue."”;
break;
case "note":
switch (wp.PageInfo.Name)

{
case "wiz_close":
ti.Text = "Give a polite congratulatory message for fixing the issue.";
break;
case "wiz_reject":
ti.Text = "Give a good reason for rejecting the issue.";
break;

case "wiz_reopen":
ti.Text = "Justify why you think the issue should be reopened.";

break;

case "wiz_resolve":
ti.Text = "Explain why you think the issue is fixed!";
break;

NetQuarry - Issue Track Tutorial - Part 3.docx Page 78 of 130

}

break;
case "document":
ti.Text = "Upload additional supporting information.";
break;
}
wp.PageElementInfo.TextItems.Add("Description™, ti);
break;

We do not need to make similar changes to the WizardNext, or WizardPrevious handler.

This bulk update wizard only has one page, so there will be no Next and Previous events
fired.

Make the following changes to the WizardCancel event handler.

IWizardTemplate w = e.Wizard;
IWizPage wp = e.WizardPage;
IAppContext cxt = wp.AppContext;
IMapper map = wp.Mapper as IMapper;

switch (wp.PageInfo.MOP)

{

case "issuelwiz_close":

case "issuelwiz_reject":

case "issuel!wiz_reopen":

case "issuelwiz_resolve":
switch (w.CurrentPage)

{
case 1:
//--- get the issue_id from the user data, or off the query string
string issue_id = wp.PageData.GetString("resolve_issue", "issue_id", null);
if (issue_id.IsNullOrEmpty())
{
issue_id = HttpContext.Current.Request[ReqParams.PrimaryKey];
if (issue_id.IsNullOrEmpty())
{
issue_id = HttpContext.Current.Request[RegParams.ParentRowKey];
}
}
cxt.Navigate("issue!main", issue_id);
break;
case 2:
cxt.Navigate("issue!llist");
break;
case 3:
string assignedUser = wp.PageData.GetString("resolve_issue", "assigned user_id",
null);

string individualID = EAPUtil.ToString(map.Database.DBLookup("user_guid", "users",
string.Format("user_id={0@}", assignedUser.AnsiQuote())));

cxt.Navigate("individual!main”, individuallD);

break;

}

break;

NetQuarry - Issue Track Tutorial - Part 3.docx Page 79 of 130

Performing the Bulk Modify

We now override a new Wizard Event, WizardDataExchange. This event handler will be
used to override the default finish handling. We are using this event handler rather than
WizardFinish due to the lifecycle of the data during the Finish handling of a wizard.

When the WizardFinish handler has fired, none of the data on the page has been
transferred to the underlying mapper object for that last page, nor has that data been
posted into the UserData collection of the wizard page.

Only in the WizardDataExchchange event, and specifically when that event is fired under
the WizardDataExchange.AfterMapperToUserDataFinal context is the necessary data
supplied to the mapper and user data collection.

On a standard wizard where each page represents a single instance of data, this event is
fired only once during the finish handling. However, we have constructed a wizard with

two panes. Therefore the WizardDataExchange event will be fired for each Wizard pane
of the wizard page.

Because of this sequential firing of events, we have to ignore the first event fired by the
issue mapper because we also need to know the note text to associate with an updated
issue. When we then get the second event fired for the note mapper, we have all the
data we need to continue with the save. We can get directly to the note mapper data
(therefore the note text) and extract the issue mapper from the wizard page.

Once the bulk modify process is complete, we navigate to a list of issues that were
modified.

if (e.ExchangeType == WizDataExchangeType.AfterMapperToUserDataFinal)

{

IWizardTemplate w = e.Wizard;

IWizPage wp = e.WizardPage;

IAppContext cxt = wp.AppContext;

IMapper map = wp.Mapper as IMapper;

Fields dirtyFields = null; //--- the set of fields that are dirty on issue mapper.

switch (map.Key)
{
case "issue":
//--- this is the issue mapper save. We're going to not save anything and handle
everything when the note is saved.
dirtyFields = map.Fields.Subset(FieldSubsetType.Dirty, true);
if (dirtyFields.Count == 0)

//--- if there are no changes to make, then throw an error
e.Cancel("You must change at least one of the issue parameters");

}

else

{
//--- if there are changes, tell the platform we've handled everything
//--- it won't try to save the issue record wizard as a new issue.
//--- but the finish processing will continute as though the save did occur
e.Result = ExtResults.HandledInFull;

}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 80 of 130

break;

case "note":
//--- this is the note saving time. We have to get to the issue mapper as well
EAP.WebHost.WizGrouper wg = w.CurrentWizPage as EAP.WebHost.WizGrouper;
WizContainerPanes wcp = wg.Panes;
IWizContainerPane iwcp = wcp["issue_data"];
IWizPage wpIssue = iwcp.Renderer;

IMapper mapIssue

wpIssue.Mapper as IMapper;

//--- identify the fields that are dirty on the issue mapper
dirtyFields = mapIssue.Fields.Subset(FieldSubsetType.Dirty, true);
string copyFields = null;

//--- create a semi-colon delimited list of modified issue fields.
foreach(IField f in dirtyFields)

{
}

copyFields += copyFields.IsNullOrEmpty() ? f.Key : string.Format(";{0}", f.Key);

//--- get the selected record filter. Get both the registered filter id and the actual
filter expression

string f1tQP = HttpContext.Current.Request["flt_id"];

string filterExpr = SavedFilter.ExtractFilterFromReq(cxt, HttpContext.Current.Request,

"flt_id");
//--- use the filter expression to filter for the right issues
//--- as we iterate through a list of records and save, we don't do a row requery.
//--- it disrupts the positioning of the current record in the mapper
using (Issue iss = Issue.OpenReader(cxt, filterExpr, @, MapperAttrs.NoRowRequery))
{
//--- instantiate the note mapper up front, outside the inner looping of issue updates
//--- always be mindful of performance
using (Note note = Note.OpenNew(cxt))
while (iss.MoveNext())
{
//--- set the selected values from the wizard issue mapper onto the selected
issues
iss.Mapper.Exec(MapperkExecCmds.CopyValuesFrom, @, mapIssue, copyFields);
iss.Save();
//--- create the note to go along with the bulk change
note.MoveNew();
note.related_id = iss.issue_id;
note.note_text = EAPUtil.ToString(map.Fields["note_text"].Value);
note.Save();
}
note.Close(); //--- always close your mappers
iss.Close(); //--- always close your mappers
}
//--- navigate to the finished bulk update issues. The platform recognizes the
//--- registered filter on the "flt" paramter and automatically applies the required
filter.

cxt.Navigate("issue!llist", null, "flt=" + EAPEncode.ForUrl(f1tQP), "nav");

break;

NetQuarry - Issue Track Tutorial - Part 3.docx Page 81 of 130

Compile the Issue extension.
Now login to the application. Navigate to the issues list and try to bulk change one or

more issues. If you change the assigned user, that assigned user will receive a
notification change through your email handling application.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 82 of 130

Scheduled Tasks

A scheduled task is a mechanism that allows background tasks to be executed without
any user intervention. Typical uses for scheduled tasks are

e Sending reminder notifications to users
e Performing data maintenance tasks

e Executing long running processes behind the scenes that are initiated by user
actions on the front end (e.g. queuing a job)

In this tutorial we will create a scheduled task that runs nightly that will send out

reminder notifications to users if they have any Open issues that are due in the next
milestone when the milestone is due in two days.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 83 of 130

Create the Open Issues Due in 2 Day Task

Go back to your IssueTrak code solution right click on the Solution items and “Add ->
New Project”.

Set the following options

Item Value

Project Type Visual C#

Template Class Library
Name Notifications
Location C:\NetQuarry\Customers\IssueTrak\Source\Tasks

In a process similar to when we created an new extension
Change the name of the project to IssueTrak.Tasks.Notifications
Change the name of Class1.cs to Notifications.cs

Add references to...

IssueTrak.Common.dll, NetQuarry Core EAP.Core.dll, NetQuarry Data Binding. Use the
“Recent” tab of the Add Reference dialog for speed.

Drag the project.build file from IssueTrak.Common to IssueTrak.Tasks.Notifications
Open the project.build file in the IssueTrak.Tasks.Notifications component.
Change the solution value to “IssueTrak.Tasks.Notifications”

Drag the AssemblyInfo.cs file from IssueTrak.Common \Properties to
IssueTrak.Tasks.Notifications\Properties, overwriting when prompted.

Open the AssemblyInfo.cs file in the IssueTrak.Tasks.Notifications\Properties.
Change the Assembly Title to “IssueTrak.Tasks.Notifications”

Change the Assembly Description to “IssueTrak Notifications Task”

Right click on the IssueTrak.Tasks.Notifications project and choose Properties
Change the Assembly Name to IssueTrak.Tasks.Notifications

Change the Default Namespace to IssueTrak.Tasks (save and close the Properties)

In the Notifications.cs file, use this code

NetQuarry - Issue Track Tutorial - Part 3.docx Page 84 of 130

using
using
using
using
using
using
using
using

System;
System.Collections.Generic;
System.Ling;

System.Text;
IssueTrak.Common;
IssueTrak.Data;

NetQuarry;

NetQuarry.Data;

namespace IssueTrak.Tasks

{

public class Notifications

{
}
}

protected override void OnExec(int cmdID, params object[] args)

{
}

Inside the Notifications class, override the OnExec Handler

Having made these changes you should be able to successfully compile the
IssueTrak.Tasks.Notifications object.

NetQuarry - Issue Track Tutorial - Part 3.docx

: NetQuarry.ScheduledHandler

Page 85 of 130

Register the task in the Studio

You now have to register this task in the studio. Instead of going to the Extension list
under Components to register this task, you instead register the component as a
“Handler”. Click on the “Handlers"” list under Components and add the following data.

Name Value Notes
Module issue

Name NotificationHandler

Component Type Handler

Component Name

IssueTrak.Tasks.Notifications

Assembly Name

IssueTrak.Tasks.Notifications.dll

Assembly Path

C:\NetQuarry\Customers\IssueTrak\So
urce\Tasks\Notifications\bin\debug

Assembly Path Prod

%NQROOT%\Apps\IssueTrak\bin

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 86 of 130

Define the Task in the Studio

Now go to the Scheduled Tasks list (ALT+K) and define a new scheduled task as

follows.

Name Value Notes

Module issue

Task Name OpenlssueMilestoneln2Days

Component NotificationHandler This is the component you just
registered.

Interval Mins 1 The frequency of the task. If this task
was set to run between certain times,
or had no time restriction, the task
would fire every 1 minute. However
this task will run once a day (see Run
Once Time, below).

CommandID 1 Which command ID that represents
this task. This ID will be passed to the
OnExec override in your task so you
know which of many tasks should be
executed.

Run Once Time 4:00AM This task will run once a day at 4:00

AM local time.

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 87 of 130

Create a Mapper for Identifying who to Notify

Go to the Mappers list and create a new mapper with the following settings

Item Value Notes
Module individual

Name individual_milestone_notify

View individual_milestone_notify_view

Data Source

IssueTrak

Move off the row to save, then select the individual_milestone_notify mapper. Right
click on it and choose “Create Fields...”. Select all the fields and click OK.

This mapper is based on a view that returns the distinct set of users who have an issue
in a milestone with a due date. We will use this mapper to obtain a set of users to
notify by filtering on the milestone due date and the issue status (open).

The notification will also contain a list of issues that are assigned to the user in that
milestone. We will add this support in the same mapper, by adding a MapperSummary
type field to the mapper.

Go to the Fields subform of the individual_milestone_notify mapper and add a new field
with the following values.

Field

Settings

Notes

related_issues

Key Name: related_issues

Column Order: 90

CellType: MapperSummary

.NET Type: System.String

Data Type: varchar

Attributes: ExcludeFromSelect

Table: +

Mapper: issue (make sure set this before you set the FieldList
property. The fields populate into the FieldList property widget once the
mapper is specified)

FieldList: issue_number;summary;priority_id; project_id;component_id
HTMLSummaryFlags: Horizontal

Caption: Related Issues

Ordinarily on a
MapperSummary
field we would set
the Filter property
in the metadata but
in this example we
will be
programmatically
modifying the
properties of the
MapperSummary
field in order to
select the
appropriate data.

Perform a Typed Mapper code generation.

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 88 of 130

Create the Notification Template

Go to the templates list and add a template with the following settings.

Item Value Notes
Module individual

Name notify-milestone-2day-open

Type File

With this template selected, click on the Property Sheet and set the following properties

Property Value Notes
FileName IssueTrak\individual\notify-milestone-2day- This file already exists in this
open.html template location. Feel free to
' edit the contents once we get
this functionality working.
Subject You have some issues due to be completed on

{{milestone_due_date}}

NetQuarry - Issue Track Tutorial - Part 3.docx Page 89 of 130

Declare More Typed Mappers

In the IssueTrak.Common project. Add a new class file called project.cs and add the
following code to the class file.

using System;

using System.Collections.Generic;
using System.Text;

using NetQuarry;

using NetQuarry.Data;

using IssueTrak.Common;

namespace IssueTrak.Data

{

public class Project : IssueTrak.Data.Generated.project<Project>
{
}

public class Milestone : IssueTrak.Data.Generated.milestone<Milestone>
{
}

public class Component : IssueTrak.Data.Generated.component<Component>
{
}
}

In the existing class file, Individual.cs in the IssueTrak.Common project, declare the

Individual milestone notify typed mapper as follows

public class IndividualMilestoneNotify :

IssueTrak.Data.Generated.individual milestone_notify<IndividualMilestoneNotify>
{

}

Compile the Common Project.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 90 of 130

Create the Notification Code in the Notification Handler
Go back to your Notification object in the IssueTrak solution and add the following code

to your task handler class.

private const int cnOpenIssueMilestoneIn2Days = 1;
protected override void OnExec(int cmdID, params object[] args)

{

switch (cmdID)

{

case cnOpenIssueMilestoneIn2Days:

OpenIssueMilestoneInDays(2);
break;

}

}

private void OpenIssueMilestoneInDays(int offset)

{

}

Note that we have a switch statement to identify the right task to be executed and we
call a separate function to perform the work. We may want to reuse the function for a
different number of days to be offset.

In the OpenlssueMilestoneInDays function, add the following code.

//--- identify any milestones due in the next offset days
string milestoneFilter = string.Format("DATEDIFF(DD, {0}, milestone_due date) = {1}",
DateTime.Today.ToString("yyyy-MM-dd").AnsiQuote(), offset);
if (this.Application.DataDB.DBExists("milestone", milestoneFilter))
{
//--- create the notify mapper now, but don't query it until we know we have notifications to
send
using (IMapper notify = NetQuarry.Data.Mapper.CreateAndLoad("individual milestone_notify",
this.Application, @, @, null, false, false))
{
//--- attach the generic mapper to a typed mapper.
IndividualMilestoneNotify imf = IndividualMilestoneNotify.Attach(notify);

//--- we can now identify to show open issues for the current milestone at the moment

string notifyFilter = string.Format("status_id={@} AND milestone_due_date={1}",
(int)IssueTrak.Data.Picklists.issue status.open,
DateTime.Today.AddDays(offset).ToString("yyyy-MM-dd").AnsiQuote());

imf.Mapper.Filters.Add("OpenMilestoneIssues", notifyFilter);

//--- set the filter criteria for the related issues

string issueFilter = string.Format("assigned user_id=['user_id] AND status_id={@} AND
milestone_id IN (SELECT milestone_id FROM milestone WITH(NOLOCK) WHERE
milestone_due_date={1})", (int)IssueTrak.Data.Picklists.issue_status.open,
DateTime.Today.AddDays(offset).ToString("yyyy-MM-dd").AnsiQuote());

imf.Fields.related_issues.Properties.Add("Filter", issueFilter);

//--- requery the notify mapper
imf.Requery();

NetQuarry - Issue Track Tutorial - Part 3.docx Page 91 of 130

//--- and iterate through to notify

//--- NEVER Loop on a potentially long process without checking whether to yield to a stop
service request

//--- note this method has a little different looping pattern in that when we requery, we
are already on the first row.

if (imf.HasRecords)

{
do
{
imf.Send(imf.email address, "notify-milestone-2day-open");
} while (imf.MoveNext() && !this.IsServiceStopped);
}
notify.Close();
}
}
else
{

DevLog.LogMessage("IssueTrak.Tasks.Notifications"”, "OpenIssueMilestoneIn2Days", "There are no
milestones due in two days. Reminder notifications will not be sent.", LogMessagelevel.Info);

}

Compile the Notification Task project.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 92 of 130

Use the TaskRunner to test your code.

In production, the tasks you create will run under the context of the NetQuarry
scheduler process, EAP.Scheduler.exe. In development, you can also use this process to
run your tasks. However, it's quite difficult to debug your code by attaching to the
EAP.Scheduler.exe process.

The minimum launch frequency for a scheduled process is 1 minute. Debugging the
EAP.Scheduler.exe, you have to wait 1 minute before your task will launch. If your task
has a start time set to 4:00AM, you will have to wait until 4:00AM to literally debug your
code! Also if you have multiple scheduled tasks configured, they will all start running
unless you manually disable the tasks you don’t want to debug.

To streamline the debugging of tasks, you can launch any task, on demand by running
the EAP.Tools.TaskRunner.exe process. It is a windows based program that lets you
choose to run any task from any configured application, immediately, on demand.

You can launch the Task Runner from the “NQ Task Runner” shortcut on the NQ Links
menu on the task bar.

When the tool launches, it inspects the EAP.Scheduler.exe.config file for any configured
applications. For each application that is configured, the tool attempts to establish a
connection to each application to ascertain whether the machine can run tasks for that
application. At the end of these checks, the available applications to test can be
selected from the drop down and the errors that occurred trying to connect to other
applications are listed in the status window.

Select the IssueTrak application and the task list will be populated with the configured
task for that application. Some tasks may be disabled. These are disabled to the
EAP.Scheduler.exe process, but are available to be launched by the EAP.TaskRunner.exe
tool.

Select the task you want to run (“OpenlssueMilestonIn2Days”) and click on the Execute
Selected Task button.

If you get any errors with the TaskRunner they are presented in the Task Result panel
below the list of tasks. It is recommended however that you inspect the devlog to see
more details about the error. The devlog for the EAP.Tools.TaskRunner.exe is
EAP.TaskRunner.exe.nql

You may find that when you execute the task, it finishes quickly and no emails are sent.
This is not unusual because the task is a time based notification and you must be within
2 days of a milestone to even have the task execute and pick up any data.

If you wanted to force the code to run, you could modify the milestone due date for
some milestones to be within the two day window.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 93 of 130

Preferences

We finally get to add the preference support to the application. We've covered a few
preliminary steps for preference support.

Adding the Session Properties.
Generating Session classes
Configuring the preference hierarchy

Coding the preference hierarchy

The next steps for preference support are

Create the preference extension

Create mappers to manage preference persistence at each hierarchy level
Attach the preference extension to the mapper

Create pages to display preferences for each hierarchy level

Associate the preference pages with the appropriate hierarchy level

NetQuarry - Issue Track Tutorial - Part 3.docx Page 94 of 130

Create the Preference Extension

Go back to your solution in Visual Studio and add a new C# project as follows...

Item Value

Project Type | Visual C#

Template Class Library
Name Preferences
Location C:\NetQuarry\Customers\IssueTrak\Source\Extensions\Preferences

In a process similar to when we created an new extension

Change the name of the project to IssueTrak.Extensions.Preferences
Change the name of Classl.cs to Preferences.cs

Add references to...

IssueTrak.Common.dll, NetQuarry Core EAP.Core.dll, NetQuarry Data Binding. Use the
“Recent” tab of the Add Reference dialog for speed.

Also add a reference to EAP.Extensions.Preferences (under .Net). This is required for
setting the base class of you preference extension to the Platform Preference Handler.

Drag the project.build file from IssueTrak.Common to IssueTrak.Extensions.Preferences
Open the project.build file in the IssueTrak.Extensions.Preferences component.
Change the solution value to “IssueTrak.Extensions.Preferences”

Drag the AssemblyInfo.cs file from IssueTrak.Common \Properties to
IssueTrak.Extensions.Preferences \Properties, overwriting when prompted.

Open the AssemblyInfo.cs file in the IssueTrak.Extensions.Preferences \Properties.
Change the Assembly Title to “IssueTrak.Extensions.Preferences”

Change the Assembly Description to “IssueTrak Preferences Extension”

Right click on the IssueTrak.Extensions.Preferences project and choose Properties
Change the Assembly Name to IssueTrak.Extensions.Preferences

Change the Default Namespace to IssueTrak.Extensions (save and close the Properties)

In the Preferences.cs file, use this code

NetQuarry - Issue Track Tutorial - Part 3.docx Page 95 of 130

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using IssueTrak.Common;

using IssueTrak.Data;

using NetQuarry;

using NetQuarry.Data;

namespace IssueTrak.Extensions

{

public class XPreferences : NetQuarry.Preferences.Extension<IssueTrak.Common.Session>

{

//--- if you override any events you must call the equivalent base override event handler
//--- as all the events are being handled by the platform extension
}
}
Compile and register this extension in the studio.
Name Value Notes
Module IssueTrak-preferences
Name XPreferences
Component Type Extension
Component Name IssueTrak.Extensions.XPreferences
Assembly Name IssueTrak.Extensions.Preferences.dll
Assembly Path C:\NetQuarry\Customers\IssueTrak\Sour
ce\Extensions\Preferences\bin\debug
Assembly Path Prod %NQROOT%\Apps\IssueTrak\bin

NetQuarry - Issue Track Tutorial - Part 3.docx Page 96 of 130

Create Company Preferences
Create the Company Preferences Mapper

Go to the mappers list and create the following mapper

Item Value Notes

Module IssueTrak-preferences

Name prefs_company

View xot_preferences We have to give this mapper a view

name, but the data will not be
extracted directly from this table. The
preference extension extracts the
relevant preferences from the
xot_preferences table and transforms
the data to display and manages the

persistence.

Data Source IssueTrak

Attributes SkipCodeGeneration This mapper will not be a typed
mapper.

Move off the row to save, then select the prefs_company mapper. This time we will
NOT perform a Create Fields. All the fields you create in this mapper are manually
added.

Now create a standard picklist with the following options

Item Value Notes

Module IssueTrak_preferences

Name yes-no-noblank

Type StandardPicklist

Attributes Cache, LimitToList, StoreAltInt, NoNullEntry There will be no blank entry option for
comboboxes using this picklist. Only
Yes, or No option will be provided.

And then in the Items subform add these items

Name Notes

yes, AlternateKeylnt = 1

no, AlternateKeyInt = 0

NetQuarry - Issue Track Tutorial - Part 3.docx Page 97 of 130

The preference extension you created that derives from the platform extension that
actually does all the work, constructs a DataTable of preference values for the selected
preference level and owner ID. It determines what fields to put in the data table based

on the fields defined

in the mapper.

Field

Settings

Notes

company_id

Key Name: company_id
Column Order: 10

Column Width: 0

CellType: TextBox

.NET Type: System.Guid
Data Type: uniqueidentifier

Attributes: PK

UsersViewDashboard

Key Name: UsersViewDashboard
Column Order: 20

Column Width: 10

Picklist: yes-no-noblank
CellType: ComboBox

.NET Type: System.Boolean
Data Type: bit

Table: +

Caption: View Dashboard On Startup?

Go to the Extensions subform and attach the following extensions to the prefs_company

mapper.

Extension

Notes

IssueTrak.Extensions.XPreferences

ReadableAudit.Audit

Mark the UsersViewDashboard field with the “Audit” attribute

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 98 of 130

Create the Company Preferences Page

We will create the company preferences page on the company admin page as an in
place navigate link. Go to the Pages List and select the company admin page.

Add a Page Elements with the following settings

Item Value Notes
Slot Name ConsolePage

Name preferences

Component ConsoleDetail

Order 60

With that new Page Element selected, click on the Property sheet and set the following

properties.

Property Value Notes

PaneAttributes | PaneNavigation, EditModeOn EditModeOn forces the pane to be
editable at all times and eliminates the
need to click on the “Edit” button of a
toolbar to make changes

ParentViewKey | company _id

ViewKey company_id

Column 1

Mapper prefs_company

Caption Preferences

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 99 of 130

Associate the Preference Page to the Correct Preference hierarchy level.
Go to the Preference Levels list and the Pages subform.

Create a new record with the value company!main page.

Preference Levels - (2 Rows)

Module ' Preference Level Parent Preference Lev
IssueTrak-preferences | individual company

* |

<« m

Pages |

page_list - (1 Rows)

Preference Page

P icompany!main i

NetQuarry - Issue Track Tutorial - Part 3.docx Page 100 of 130

Add the Link to Company Preferences

The final step is to create a navigation element to get to the company preferences page.

Continuing in the Studio, go to the list of Navbars and select the navbar we created for
the company admin page, “company_links”

Add a new Target with the following settings.

Item Value Notes
Module company

Name preferences

Target Type Pane

Target preferences

Sort Order 50

With that new Target selected, click on the Property sheet and set the following

properties.

Property Value Notes

ParentViewKey | company_id

ViewKey company_id

Caption Preferences for [$owner_name] The $ modify in the field reference

syntax means to resolve the DISPLAY
value of the field rather than the raw
value.

Now login to the application. Navigate to the Admin page, Companies List and drill
down to a company. Click on the link to Preferences and the following page will appear

Individual

Issue Administration

Company - NetQuarry, Inc

Save

Links

Refresh Design

NetQuarry, Inc Preferences

Company Detail

Projects

Individuals

Audit

Preferences

NetQuarry - Issue Track Tutorial - Part 3.docx

I View Dashboard On Startup?

Page 101 of 130

Notice that the page is always editable. Any changes to the preferences of the company
will be audited to the company record.

Tweaks to Preference Page

Ideally we would have an indication of which preferences we are changing. Let’s add

that now.

Add the Company Name

In the Studio, go to the prefs_company mapper. Add a field with the following settings.

Field

Settings

Notes

owner_name

Key Name: owner_name

Column Order: 15

Picklist: companies

Column Width: 30

CellType: Label

.NET Type: System.Guid

Data Type: uniqueidentifier

Attributes: ExcludeFromSelect, Locked
Style: font-weight: bold; border-bottom: ridge
1px silver; color: #666666; padding-bottom:
10px; padding-top: 20px

Caption: Company

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 102 of 130

Set the Company Name

In the Preferences extension in Visual Studio, override the RowCurrent Event handler
with the following code.

base.RowCurrent(sender, e);

//--- identify the primary key field for this preference mapper

IField f = sender.Fields.Find("", FieldFindType.PK);

if (f != null)

{

//--- and assign the value to the "owner_name" field to be resolved by a picklist
sender.Fields.SetValue ("owner_name", f.Value, 0, FindBehaviour.OkIfNotFound);

}

This code determines the primary key field of the preference mapper and sets its value
to the value of the “owner_name” field on the mapper. If your preference mappers
have an owner_name field with a picklist to resolve the raw value, this will work all the
time. If the field doesn't exist to set, the FindBehaviorAttribute specifies it's ok if the
field is not found and an error will not be thrown.

Compile the extension and log back into the application and navigate to the company
preferences page.

AU rauon ———— s avmts st st e s

Company - NetQuarry, Inc

Save Refresh Design

Links NetQuarry, Inc Preferences
Company Detal
Projects

Individuals
Audit NetQuarry, Inc

Preferences
| View Dashboard On Startup?

NetQuarry - Issue Track Tutorial - Part 3.docx Page 103 of 130

Create the Individual Preferences

We will now add preferences to the individual. The individual page is not using in place
navigation so the steps will be slightly different. We”ll be creating a dedicate preference
page. Another difference between the two sets of steps is that we require you to create
a SQL picklist to resolve the individual_id to a name. We will create the picklist as a

“late bound” picklist purely to resolve an individual_id to a name, but won't be usable as
a picklist source for selecting in a combobox.

Create the Individual “Late Bound” Picklist

Create a new

SQL Picklist with the following settings.

Item Value Notes
Module individual

Name individual_Ib

Data Source | IssueTrak

Source SELECT individual_id, full_name,
null, CASE ISNULL(is_deleted,0)
WHEN 0 THEN 1 ELSE 0 END from
individual with(nolock) order by 2

Type SQL

Attributes Cache, LimitTolList

Move off the row to save and then select the individual_lb picklist and click on the
property sheet and add the following property.

Property

Value

Notes

LateBoundSQL

SELECT individual_id, full_name, null, CASE
ISNULL(is_deleted,0) WHEN 0 THEN 1 ELSE 0
END from individual with(nolock) WHERE
individual_id={{KEY}} order by 2

Setting the LateBoundSQL property is
what makes a SQL picklist “Late
Bound”. At run time the value needing
to be resolved replaces the {{KEY}}
value in the WHERE clause of the late
bound sqgl. The returned data is
cached in memory against the key
value so a subsequent resolution is
just a cache hit, rather than a
database hit.

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 104 of 130

Create the Individual Preferences Mapper

Go to the mappers list and create the following mapper

Item Value Notes

Module IssueTrak-preferences

Name prefs_individual

View xot_preferences

Data Source IssueTrak

Attributes SkipCodeGeneration This mapper will not be a typed

mapper.

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 105 of 130

Move off the row to save, then select the prefs_individual mapper. Click on the Fields
subform and add the following fields

Field

Settings

Notes

individual_id

Key Name: individual_id
Column Order: 10

Column Width: 0

CellType: TextBox

.NET Type: System.Guid
Data Type: uniqueidentifier

Attributes: PK

owner_name

Key Name: owner_name
Column Order: 20
Picklist: individual_Ib
Column Width: 30
CellType: Label

.NET Type: System.Guid

Data Type: uniqueidentifier

Attributes: ExcludeFromSelect, Locked

Style: font-weight: bold; border-bottom: ridge
1px silver; color: #666666; padding-bottom:

10px; padding-top: 20px

Caption: Individual

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 106 of 130

Field

Settings

Notes

UsersViewDashboard

Key Name: UsersViewDashboard
Column Order: 30

Column Width: 10

CellType: ComboBox

Picklist: yes-no-noblank

.NET Type: System.Boolean
Data Type: bit

Table: +

Caption: View Dashboard On Startup?

Go to the Extensions subform and attach the following extensions to the prefs_individual

mapper.

Extension

Notes

IssueTrak.Extensions.XPreferences

ReadableAudit.Audit

Mark the UsersViewDashboard field with the “Audit” attribute

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 107 of 130

Create the Individual Preferences Page

Go to the Pages List and add a new page with the following settings.

Item Value Notes
Module IssueTrak-Preferences

Name prefs_individual

Moniker Individual Preferences

Template TabbedSubformTemplate.aspx

Mapper prefs_individual

With that new Page selected, click on the Property sheet and set the following
properties.

Property Value Notes
Caption Preferences for [$owner_name]

Now add a Page Elements with the following settings

Item Value Notes
Slot Name Main

Component phantomdetail

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 108 of 130

Associate the Preference Page to the Correct Preference hierarchy level.
Go to the Preference Levels list and the Pages subform.

Create a new record with the value issuetrak-preferences!prefs_individual page.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 109 of 130

Create UI to Get To Individual Preferences Page
Create a navigation element to get to the individual preferences page.

Continuing in the Studio, we have to create a navigator to provide a nav target and then
apply that navigator on a MiniNav component on the individual'main page.

Create the Navigator

Go to the Navigators list and create a new navigator with the following settings

Item Value Notes

Module individual

Name individual_links

Type Navbar

Attributes AddParentInfo This forces parent information on to
all of the navbar’s targets. This
ensures that when you click on the
workflow link it takes you to the
wizard filtered to the correct issue.

Select the “individual_links” navbar and then in the Targets subform below, add a new
Target with the following settings.

Item Value Notes
Module individual
Name preferences

Target Type Page

Target issuetrak-preferences!prefs_individual

Sort Order 10

With that new Target selected, click on the Property sheet and set the following
properties.

Property Value Notes

ParentViewKey | individual_id

ViewKey individual_id

Caption Preferences

NetQuarry - Issue Track Tutorial - Part 3.docx Page 110 of 130

Add a MiniNav to the Individual Page

Click on the Pages link (or type Alt+P). Make sure the individual'main page is selected,
then click on the Page Elements subform.

Create a new Page Element with the following settings

Item Value Notes
Slot Name ConsolePage

Name individual_links

Component MiniNav

Order 20

With that new Page Element selected, click on the Property sheet and set the following
properties.

Property Value Notes
Column 1

Navigator individual_links

Caption Links

NetQuarry - Issue Track Tutorial - Part 3.docx Page 111 of 130

Set the Individual Name

There is no code change required for the preference extension to handle this new
preference level. The code we added originally is generic.

Navigate to the preferences page of an individual to confirm everything is hooked
together.

Individual Issue Administration

Individual List Individual Preferences for admin guy

New Save Refresh Design

admin guy

("] View Dashboard On Startup?

NetQuarry - Issue Track Tutorial - Part 3.docx Page 112 of 130

Using Preferences
Preference Behavior

When you view preferences, it recursively loads the set of preferences for the current
level from the highest level of inheritance, down to the required level, as defined by the
preference hierarchy in the metadata.

Go to the company preferences page. Check the box for “View Dashboard On Startup”
to make it true. Log out, and log in again, navigate to the preferences page for the
same company. It will still be checked.

Now navigate to an individual’s preferences. Notice that when we first tested the
Individual Preferences, the “View Dashboard On Startup” was unchecked. Now, when
you visit the preferences for an individual, it shows the preference as checked. This is
because the individual has inherited it's preference from the parent company.

On the individual preference, you can uncheck the “View Dashboard On Startup” setting
and save. That individual now has a specific preference set for “View Dashboard On
Startup” and overrides the parent company preference. From this point onwards, any
changes to the parent company preference are ignored as the individual has a specific
overriding preference.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 113 of 130

Using Preferences in Code

Any time you have access to the local session object you can simply access the value of
that preference for the current logged in user. Additionally, you can instantiate a
session instance for any object that supports preferences, via the “Createlnstance...”
methods defined in the IssueTrak.Common.Session class.

We'll now implement some code that refers to the “View Dashboard On Startup”
preference. If that preference is set to true, then the user will initially logon to the
Report Dashboard page. If the preference is set to false, the user will initially logon to
the next available page.

Go to the Startup.cs file in the IssueTrak.Common. In the Startup application extension
class, create a new function called SetPermissionsBasedOnPrefs, as follows...

private void SetPermissionsBasedOnPrefs(IAppContext sender)

{
PageInfo pi = null;

//--- get the session from the application
IssueTrak.Common.Session itSess = (IssueTrak.Common.Session)sender.Session;

//--- get the page info object of the dashboard page

pi = sender.PageInfos["issuetrak-home!dashboard"];

if (pi != null)

{
//--- make sure the page exists then test the user's preference
if (!itSess.UsersViewDashboard)

{
//--- remove the page from the collection of pages
sender.PageInfos.Remove(["issuetrak-home!dashboard");

}
}
}
Then in the same class add this override to the WakeUp event handler

public override void WakeUp(IAppContext sender, EAPEventArgs e)

{
if (!IsPasswordUser(sender, sender.UserContext))
{
SetPermissionsBasedOnPrefs(sender);
}
}

Then in the existing AfterLoad event handler, make the following highlighted changes

NetQuarry - Issue Track Tutorial - Part 3.docx Page 114 of 130

public override void AfterLoad(IAppContext sender, EAPEventArgs e)
{

//--- do NOT continue with this if this is reset password
if (IsPasswordUser(sender, sender.UserContext))
return;

else

{

IssueTrak.Common.Session session = sender.Session as IssueTrak.Common.Session;
session.Init(); //--- initialize a session

SetPermissionsBasedOnPrefs(sender);
}
}

Compile the IssueTrak.Common project.

Before you test the code, you need to modify the page permissions for the issuetrak-
home!dashboard page. Go to the Pages list and select the issuetrak-home!dashboard
page. In the permissions subform tab, make sure all profiles can “read” the dashboard
page.

Now login to the application. Depending on the preference settings at the company and
individual level, you may, or may not be able to see the dashboard page. Make changes

to preferences and logout and login as that user to see the effects of changing the
preferences.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 115 of 130

Using Preferences in Metadata

Another way to consume preferences, is to declare a preference as requiring an
embedded function. With an embedded function wrapper to a preference, you can use
the embedded function as a default value in meta data, so new records are created with
values based on the set of user’s preferences.

Create New Session Properties

In the NetQuarry Studio, go to the Session Properties and create two new properties
with the following settings

Field Settings Notes

DefaultIssueProject Name: DefaultIssueProject The preference is
essentially going to store

. an integer value but a null
Type: String integer value is cast to
the value 0. we want null
Attributes: DynamicOnly, GenEmbeddedFunc, to be null, not 0

SessionPersist

DefaultIssueComponent | Name: DefaultIssueComponent
Type: String

AttributesDynamicOnly, GenEmbeddedFunc,
SessionPersist

Generate the Session objects and compile the IssueTrak.Common project.

In the generated session class, in addition to declaring the new session properties, the
code to register the values of these session properties as embedded functions has been
added.

_appCxt.RegisterEmbeddedFunction("DefaultIssueComponent”,
EAPUtil.ToString(_defaultComponent));
_appCxt.RegisterEmbeddedFunction("DefaultIssueProject"”, EAPUtil.ToString(_defaultProject));

NetQuarry - Issue Track Tutorial - Part 3.docx Page 116 of 130

Add the new Preferences to the prefs_individual mapper by adding the following fields
to the prefs_individual mapper.

Field

Settings

Notes

IblIssuePrefs

Key Name: IblIssuePrefs

Column Order: 30

Column Width: 30

CellType: Label

.NET Type: System.String

Data Type: varchar

Attributes: ExcludeFromSelect, Locked
CellTypeAttributes: StaticFromCaption
Style: font-weight: bold; border-bottom:
ridge 1px silver; color: #666666;
padding-bottom: 10px; padding-top: 20px

Caption: Default Issue Preferences

DefaultIssueProject

Key Name: DefaultIssueProject
Column Order: 40

Picklist: projects

Column Width: 20

CellType: ComboBox

.NET Type: System.Int32

Data Type: int

Attributes: Audit

Caption: Default Project

NetQuarry - Issue Track Tutorial - Part 3.docx

Page 117 of 130

Field Settings Notes

DefaultIssueComponent | Key Name: DefaultIssueComponent
Column Order: 50

Picklist: components

Column Width: 20

CellType: ComboBox

.NET Type: System.Int32

Data Type: int

Attributes: Audit

Discrim: [DefaultIssueProject]

Caption: Default Component

Now go to the “issue” mapper and make the following field changes...

Field Settings Notes
project_id DefaultValue: !fnDefaultIssueProject()
component_id DefaultValue: !fnDefaultIssueComponent()

Now login to the application. Go to an individual’s preference page and set up a Project
and Component default preference for Issues.

Individual List = Individual ' Preferences for admin guy

New Save Refresh Design

admin guy

v|View Dashboard On Startup?

Default Issue Preferences
Default Project: | jssueTrak v
Defauit Component Compa lil

Log out and log into the application as that user and create a new issue. The new issue
will have default values for project and component

NetQuarry - Issue Track Tutorial - Part 3.docx Page 118 of 130

Issues Issue Detail [new]

Save Refresh Design Actions

Summary: *

Description: *

Assigned User: |

Category: * E
Project: * | LssueTrak []
Component: * | company =

Prioritv: * =

NetQuarry - Issue Track Tutorial - Part 3.docx Page 119 of 130

Asynchronous Requests

The platform supports a number of asynchronous request mechanisms. Perhaps the
easiest is to implement an immediate save mechanism on one or more fields.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 120 of 130

Immediate Save
Immediate Save on MiniDetail

The MiniDetail console pane is based on a static HTML template. However, we can
make a picklist, date field and check box editable (and immediately saving) via a special
field token syntax in an HTML template.

Go to the issue template %NQROOT%\Templates\IssueTrak\issue\ issue-detail-
layout.html and make the following highlighted modification

<div class="mini-detail">

<table>

<tr><td class="mini-cap">Issue Number:</td><td>{{issue_number}}</td></tr>
<tr><td class="mini-cap">Summary:</td><td>{{summary}}</td></tr>

<tr><td class="mini-cap">Description:</td><td>{{description}}</td></tr>
<tr><td class="mini-cap">Assigned User:</td><td>{{assigned_user_id}}</td></tr>
<tr><td class="mini-cap">Status:</td><td>{{status_id}}</td></tr>

<tr><td class="mini-cap">Category:</td><td>{{category_id}}</td></tr>
<tr><td class="mini-cap">Project:</td><td>{{project_id}}</td></tr>
<tr><td class="mini-cap">Component:</td><td>{{component_id}}</td></tr>
<tr><td class="mini-cap">Priority:</td><td>{{priority_id}}</td></tr>
<tr><td class="mini-cap">Severity:</td><td>{{severity_id}}</td></tr>
<tr><td class="mini-cap">Milestone:</td><td>{{+milestone_id}}</td></tr>
<tr><td class="mini-cap">Committed Date:</td><td>{{+committed_date}}</td></tr>
<tr><td class="mini-cap">Created By:</td><td>{{created_by_id}}</td></tr>
<tr><td class="mini-cap">Updated By:</td><td>{{updated_by_ id}}</td></tr>
<tr><td class="mini-cap">Date Created:</td><td>{{date_created}}</td></tr>
<tr><td class="mini-cap">Date Updated:</td><td>{{date_updated}}</td></tr>
<tr><td class="mini-cap">Is Deleted:</td><td>{{is_deleted}}</td></tr>
<tr><td class="mini-cap">Revision:</td><td>{{revision}}</td></tr>
</table>

</div>

Save the change. Log out of the application and log in and drill down to an issue. You
will see the milestone field has been decorated with a link.

LOMpONent: Uocuments
Priority: Critical
Severity: Workflow Improvement
Milestone: Friday, Feb 22, 2013
Committed Date: (not set) X
Created By: adminguy ¢ .
Updated By: adminguy Click here to change this value. |
Date Created: 2/23/2013 3:11rp i m -
Date Updated: 2/26/2013 5:28 PM

Te Nalatad- Calea

Click on the link. Each click will cycle to the next milestone option in the picklist. During
each change, an ajax request is made by the platform to save the change on that field.
This save is executed through the mapper, so the relevant mapper extension events will
be fired. For the date field, the link pops up the date picker where you can choose (or
clear) a date.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 121 of 130

You can verify the save occurs by refreshing the page and see the audit history
modifications.

Severity: Worktiow Improvement
Milestone: Frida a
Committed Date: 2/27/2013
Created By: adminguy
Updated By: adminguy
Date Created: 2/23/2013 3:11 PM
Date Updated: 2/26/2013 5:28 PM
Is Deleted: False

Revision: 5
Last 10 Notes (Click to View All) (3) » New
Related Issues (Click to View All) (0) » Add

Last 10 Audit Events (Click to View All) (10)
Changed Items Change Description
Committed Date Committed Date: 2/27/2013

Miestone Milestone: F : ~ SFriday, Mar 22, 2013

Immediate Save on MinilList

This feature is also supported on MiniList components. However, to configure this
requires a little more work. The field has to have the EditInList attribute and the
MiniList pane must have the AllowEditInList property set to true.

We currently have no MiniLists that could provide a way to view this functionality, so we
will add a MiniList pane on the individual!main page that will show all the OPEN issues
assigned to the user.

On the mini list, we will show the summary, milestone and priority fields.

From the MiniList, we should provide a link from the MiniList caption that takes you to
the full list of issues, filtered by the assigned user and open status.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 122 of 130

Use Ajax to Lookup and Populate field on Client

A slightly more complicated implementation is to fire an Ajax event through to a mapper
and have it determine a set of return values (via a JSON object) and apply those values
to client side fields.

We're going to provide an example for this on the issue pages. We are going to add
code to fire an Ajax request to a mapper when the Component field is changed. The
Ajax request will look up which user is associated with that component and apply that
user information into the user fields on the same page.

If you remember, we did perform this type of lookup in the RowBeforelnsert of the
Issue mapper extension.

Add JavaScript Function Handlers to Fields
Go to the NetQuarry Studio and the “issue” mapper.

Set the following field properties on the component_id field.

Field Settings Notes

component_id OnChange: OnComponentChange(this);

NetQuarry - Issue Track Tutorial - Part 3.docx Page 123 of 130

Tell the Application Where the JavaScript File Lives

Go to the Application list and select the IssueTrak application. In the property sheet, set
the JavaScript property to: apps/issuetrak/script/issuetrak.js

Open the .js file, %0NQROOT%\Apps\IssueTrak\Script\IssueTrak.js and add the
following code.

//--- handles the change of component_id field
function OnComponentChange(component)

{
if (component.value)
{
var aui = GetSibling(component, 'assigned_user_id'");
var au = GetSibling(component, 'assigned_user');
//--- only continue with ajax request if assigned user field is visible (the id field is
hidden of course).
if (aui && au && au.type != "hidden")
{
//--- for convenience pass the id's of the fields we are going to set.
params = "aui=" + aui.id + "&au=" + au.id + "&nodata=1";
//--- fire the request against the component mapper
//--- you can only fire events onto existing records. never new records (like the issue
mapper)
RowAjaxRequest('component', component.value, 'get default assignee', params, function() {
1
}
}
}

//--- this function is called by the Ajax response handler
function UpdateDefaultAssignee(rsp)

{

//--- evaluate the json response
var defAssignee = eval(rsp);

//--- and set the values into the client side fields
$('#' + defAssignee.aui).val(defAssignee.assigned_user_id)
$('#' + defAssignee.au).val(defAssignee.assigned user)

}

IMPORTANT

The JavaScript file you modified is part of the platform installation. Therefore, if you
reinstall a new platform version, the changes you made to the JavaScript file will be lost
forever.

To avoid this loss, you should copy your modified JavaScript file to the folder
C:\NetQuarry\Customers\IssueTrak\Config\web\Script

After the install has been completed, the Install.bat file contains a step to copy the
backed up IssueTrak.js file to the %NQROOT%\Apps\IssueTrak\Script folder.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 124 of 130

Create the Component Mapper Extension

In your IssueTrak solution in visual studio, create a TypedMapper extension based on
the Component TypedMapper (we have already declared the component TypedMapper
in the Project.cs file of IssueTrak.Common project). Follow the previous methodology
regarding naming conventions, references and copying and moving files, etc.

In your XComponent.cs file, use the following code...

using System;

using System.Collections.Generic;
using System.Lingq;

using System.Text;

using NetQuarry;

using NetQuarry.Data;

using IssueTrak.Common;

using IssueTrak.Data;

namespace IssueTrak.Extensions

{

public class XComponent : IssueTrak.Extensions.TypedExtensionBase<Component>

{

public override void RowAjaxRequest(Component sender, string requestName,
AjaxRequestEventArgs e)

{

switch (requestName)

{

case "get_default_assignee":
//--- when we get this event, we are on the current row already so it's an easy get
for default assignee

JsonSerializer json = new JsonSerializer("DefaultAssignee");
json.Add("aui", e.Params["aui"]);

json.Add("au", e.Params["au"]);

json.Add("assigned_user_id", sender.user_id);
json.Add("assigned_user", sender.Fields.user_id.DisplayTextGet(0));
e.JsonResponse = "UpdateDefaultAssignee(" + json.ToString() + ")";

break;

We are handling the RowAjaxRequest mapper event that is fired through the platform
by the JavaScript

We're taking advantage of the fact that the mapper has been re-queried to the correct
record. We have extracted the parameters we sent on the original request and
packaged up those values, together with the necessary user data in a JSON object.

Compile the Component Extension.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 125 of 130

Tweak the component mapper

Register the Extension in the NetQuarry Studio and attach the extension to the
“component” mapper.

Also on the component mapper, go to the Fields subform. Make the following field
changes

Field Settings Notes

user id PickList: user list Setting the picklist ensures the

- - user_id is resolved to a name and the
RowAjaxRequest code
(sender.Fields.user_id.DisplayTextGet
(0)) correctly resolves the user id to a
name.

Cell Type: Combobox

Now login to the application and create a new issue. When you select a component
from the dropdown the assigned user information will be populated.

B4 Gates

NetQuarry - Issue Track Tutorial - Part 3.docx Page 126 of 130

Localizing Notification Message
In this tutorial we have implemented quite a bit of functionality that presents
information to the user in the way of alerts and status messages. These messages were
simply hard coded into the source.
Clearly there are a couple of major faults with this approach.

1. There’s no way to change the text unless you recompile the code and reinstall

2. The text is not localizable into other languages

The way round these limitations is to move the text strings into the metadata and refer
to those strings in the code.

To access the text in metadata, you refer to the TextItem in the TextItems collection on
an object. The hardest part of using TextItems is to decide which object you will
associate the TextItem to.

For example.

If you have created an extension that programmatically adds a menu command to the
UI, you don’t want to have to add a custom text string to each mapper you attach the
extension to. Instead you will associate the text directly with the extension. The
common object is the extension.

If you have written a function to perform a common task, and that function is in a
TypedMapper (SendEmailNotification in Issue Typed mapper), you would want to
associate the text with the mapper, rather than an extension, or a page that uses that
mapper. The common object is the mapper object.

So, having said the hardest part is choosing where to associate the text, it turns out to
be not a very hard thing to do.

We'll go back through the issue extensions and implement some localizable strings.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 127 of 130

Localizing Strings in the XTMIssue extension

In the bulk update code that responds to the Bulk Modify Issues command, we register
a filter that will be used keep track of which issues to process and which issues to
display at the end of the bulk update process. On that final page, the Platform uses the
text associated with the filter to display contextual information about the list being
displayed.

In the PerformBulkUpdate function, modify the code as highlighted.

private void PerformBulkUpdate(Issue sender)

{

//--- declare some string consts. either locally, or at class root if used across the class
const string csFilterNameText = "IDS_BULK_MODIFY_NAME";

const string csFllterNameDescription = "IDS BULK_ MODIFY_DESC";

//--- save of a 'bucket' of keys matching those selected and get its ID

string filterName = "Issue Bulk Update";

FilterAttributes fa = FilterAttributes.Static | FilterAttributes.Temp |
FilterAttributes.KeyGuid | FilterAttributes.Hidden;

//--- save a filter of the selected records

SavedFilter sf = sender.Mapper.Exec(MapperExecCmds.FilterSave, fa, filterName) as SavedFilter;

//--- get the localized the filter strings

//--- the default values are valid strings, but just different enough from the real string so
that you recognize

//--- if the text item load isn't working for some reason

//--- we are pulling these from this, the Extension object

string fltName = this.TextItems.GetText(csFilterNameText, "bulk modified issues");
string fltDesc = this.TextItems.GetText(csFllterNameDescription, "issues affected by your bulk
changes");

//--- then register this filter
string f1tQP = SavedFilter.RegisterReqFilter(this.Application, sf.Filter, fltName, fltDesc,
"issuellist");

//--- navigate to an issue modification wizard page

//--- navigating as new so we don't need a PK to go to a specific record

//--- and pass along the ID of the saved filter. These are the issues we are going to
process.

sender.Application.Navigate("issue!wiz_bulk_modify", null, "flt_id=" +
EAPEncode.ForUrl(f1tQP), "new");

}
Compile the extension.

Now go to the NetQuarry Studio and the list of extensions (under components). Select
the Issue Typed mapper extension. Then click on the User Defined Text subform tab.

NetQuarry - Issue Track Tutorial - Part 3.docx Page 128 of 130

Add the following text items

Text Item Value Notes

IDS_BULK_MODIFY_NAME | Item Name: IDS_BULK_MODIFY_NAME

Text: Bulk Modified Issues

IDS_BULK_MODIFY_DESC | Item Name: IDS_BULK_MODIFY_DESC

Text: Issues affected by your bulk changes

Log in to the application and bulk modify some issues. The text items displayed should
be those from the metadata and not the code.

When the items are not loading correctly...

Issues (Filtered on bulk modified issues) [1 -3 of 3]

] issues affected by your bulk changes i
New Refresh Nelete - : . T

And correctly...

Issues Issues (Filtered on Bulk Modified Issues) [1 - 3 of 3]

Issues affected by your bulk changes L
New Refrech Nalata Shnw All : X

NetQuarry - Issue Track Tutorial - Part 3.docx Page 129 of 130

This Completes the Tutorial
This completes the NetQuarry tutorial.

See http://www.netquarry.com for more information. For the latest API documentation,
visit http://help.netquarry.com .

NetQuarry - Issue Track Tutorial - Part 3.docx Page 130 of 130

